
Notes for Machine Learning

Fei Li∗

∗Email: fei.li.best@gmail.com.

1

mailto:fei.li.best@gmail.com

Contents

1 The Bias-Variance Trade-off 4

2 Linear Methods for Regression 6

2.1 Linear Regression . 6

2.1.1 Online least squares . 6

2.2 Ridge Regression . 7

2.3 Lasso Regression . 8

3 Linear Methods for Classification 10

3.1 Logistic Regression . 10

3.1.1 Estimation of Parameters . 10

3.1.2 More than two classes . 12

3.2 Generative Learning . 12

3.2.1 Gaussian Discriminant Analysis . 13

3.2.2 Naive Bayes . 15

4 Beyond Linearity 16

4.1 Cubic Splines . 16

4.2 Natural Cubic Splines . 17

4.3 Smoothing Splines . 18

4.4 Local Regressions . 19

5 Decision Tree Learning 21

5.1 Decision Trees . 21

5.2 Bagging . 23

5.3 Random Forests . 24

6 Gradient Boosting 25

6.1 Motivations . 25

6.2 Boosting Schemes . 25

6.2.1 LS-Boost . 26

6.2.2 LAD-Boost . 26

6.2.3 AdaBoost . 27

6.3 Gradient Tree Boosting . 30

6.4 Comments . 31

2

7 Support Vector Machines 33

7.1 Soft Margins . 34

7.2 The SMO Algorithm . 35

7.3 Kernels . 37

7.4 SVM for More than two classes . 37

8 Model Evaluation 39

8.1 Cross-Validation . 39

8.2 ROC curve . 40

3

1 The Bias-Variance Trade-off

In James et al. 2014, a model has the form

Y = f(X) + ε.

The irreducible error ε represents something that cannot be captured by variables in X, no

matter how complicated f is. The goal of statistical learning is to obtain a good approx-

imation f̂ of f , using training data available. The estimation, f̂ , can have variance and

bias.

• Variance refers to the amount by which f̂ would change if we estimated it using a

different training data set. Since the training data are used to fit the statistical learning

method, different training data sets will result in a different f̂ . But ideally the estimate

for f should not vary too much between training sets. However, if a method has high

variance then small changes in the training data can result in large changes in f̂ . In

general, more flexible statistical methods have higher variance.

• Bias refers to the error that is introduced by approximating a real-life problem, which

may be extremely complicated, by a much simpler model. The definition is bias(f̂) =

E(f̂) − f . For example, linear regression assumes that there is a linear relationship

between Y and X1, . . . , Xp. It is unlikely that any real-life problem truly has such a

simple linear relationship, and so performing linear regression will undoubtedly result

in some bias in the estimate of f .

The mean squared error over training data Tr = {(xi, yi)}ni=1 is

MSETr = Avei∈Tr[yi − f̂(xi)]
2.

The mean squared error over test data Te = {(xi, yi)}mi=1 is

MSETe = Avei∈Te[yi − f̂(xi)]
2.

The expected test MSE can be decomposed as variance of the estimation, plus bias

squared, plus the variance of the irreducible error:

E
(
y − f̂(x)

)2

= var(f̂(x)) + bias(f̂(x))2 + var(ε)

where (x, y) is an unseen example, and we assumed that the error ε has mean zero and fixed

variance var(ε), so that E(y) = f(x). Suppose for a moment that the estimate is unbiased,

and there is also no irreducible error. Then the mean squared error would be solely due to

the variance in our estimate. In general, three factors can contribute to the test MSE: the

4

variance of the estimate, how well our function f̂ approximate the true f on average, and

errors that are out of our control.

A less flexible model typically has more bias, e.g. a constant estimate, but these models

can also have low variance, i.e. they do not have sensitive response to different training sets.

Conversely, a more flexible model typically has more variance and less bias. Depending on

the true data-generating process,as we increase model flexibility three cases can happen:

(1) Typically, the variance should increase and the bias decrease, but as the model becomes

over-flexible, there is little further reduction in bias, but the variance can continue to

increase. This results in a U-shaped test MSE curve as a function of flexibility.

(2) If the true model is linear, then as we increase flexibility starting from linear model,

there can be almost no gain in bias reduction, but the variance continue to increase.

This results in an upper-shaped test MSE curve.

(3) If the true model is highly non-linear, then as we increase flexibility there can be

dramatic reduction in bias, so that the test MSE can be L-shaped.

5

2 Linear Methods for Regression

2.1 Linear Regression

In linear regression, we assume a linear relationship between inputs and outputs: y = βTx.

We choose β so as to minimize the RSS

`(β) = (y −Xβ)T (y −Xβ) = ‖y −Xβ‖2 (1)

where y is the n-dimensional response data, X is the n× p feature data. The gradient and

Hessian of `(β) are

∂`(β)

∂β
= −2XT (y −Xβ),

∂`(β)

∂β∂βT
= 2XTX.

AssumeXTX is positive definite (⇔X is full-rank⇔XTX is full-rank), and let ∂`(β)/∂β =

0 we get the solution

β̂ = (XTX)−1XTy.

Let H = X(XTX)−1XT . We see that ŷ = Xβ̂ = Hy, so the predicted value for each

response in the training data is a linear combination of all the responses. H is the projection

matrix, which projects y into the space spanned by columns of X. Note that `(β) =

‖y −Xβ‖2 is the squared norm between the two vectors y and Xβ, so we are minimizing

the distance between them. The solution is the projection, namely y − XTβ should be

perpendicular to columns of X, so we should have Xi · (y −XTβ) = 0 for each column

Xi, i = 1, . . . , p of X, so XT (y −XTβ) = 0.

2.1.1 Online least squares

We want to recompute the parameters β as new data point (xn+1, yn+1) arrives, without

appending the new data point to X and re-applying the formula. Let

X(n+1) =

(
X(n)

xTn+1

)
, y(n+1) =

(
y(n)

yn+1

)
, XT

(n+1)X(n+1) =
(
XT

(n)X(n) + xn+1x
T
n+1

)
.

Using the Sherman–Morrison formula

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u

we have(
XT

(n+1)X(n+1)

)−1
=
(
XT

(n)X(n) + xn+1x
T
n+1

)−1

=
(
XT

(n)X(n)

)−1 −
(XT

(n)X(n))
−1xn+1x

T
n+1

(
XT

(n)X(n)

)−1

1 + xTn+1

(
XT

(n)X(n)

)−1

xn+1

.
(2)

6

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula

We let γn denote one over the denominator in Eq. (2). The formula for β(n+1) is

β(n+1) =
(
XT

(n+1)X(n+1)

)−1
XT

(n+1)y(n+1)

=
(
XT

(n)X(n) + xn+1x
T
n+1

)−1 (
XT

(n)y(n) + xn+1yn+1

)
=
[(
XT

(n)X(n)

)−1 − γn
(
XT

(n)X(n)

)−1
xn+1x

T
n+1

(
XT

(n)X(n)

)−1
] (
XT

(n)y(n) + xn+1yn+1

)
=
(
XT

(n)X(n)

)−1
XT

(n)y(n)︸ ︷︷ ︸
β(n)

+
(
XT

(n)X(n)

)−1
xn+1yn+1

− γn
(
XT

(n)X(n)

)−1
xn+1x

T
n+1

(
XT

(n)X(n)

)−1 (
XT

(n)y(n)

)︸ ︷︷ ︸
β(n)

− γn
(
XT

(n)X(n)

)−1
xn+1x

T
n+1

(
XT

(n)X(n)

)−1
xn+1yn+1

= β(n) +
(
XT

(n)X(n)

)−1
xn+1

yn+1 − γnxTn+1

(
XT

(n)X(n)

)−1
xn+1yn+1︸ ︷︷ ︸

= γnyn+1 according to the definition of γn

−γnxTn+1β(n)

= β(n) + κn(yn+1 − xTn+1β(n))

with κn = γn

(
XT

(n)X(n)

)−1

xn+1. Thus we can adjust the parameters by the prediction

error of the new point.

2.2 Ridge Regression

In ridge regression, the objective function to be minimized is

`(β) = ‖y −Xβ‖2 + λ‖β‖2. (3)

We can view `(β) as a Lagrangian, so that minimizing Eq. (5) is equivalent to

min
β
‖y −Xβ‖2 s.t. ‖β‖2 ≤ s (4)

for some s ≥ 0. For every λ ≥ 0 there is a s ≥ 0 for which the two minimization problems

are equivalent. Thus we are minimizing a quadratic function over a closed ball of radius
√
s

centered at the origin. See Fig. 1a for illustration. We see that the constrained optimization

indeed shrinks the coefficients toward the origin.

The gradient and Hessian of `(β) are

∂`(β)

∂β
= −2XT (y −Xβ) + 2λIpβ,

∂`(β)

∂β∂βT
= 2XTX + 2λIp.

Equating the gradient to zero we obtain the ridge coefficients

7

β1

β2

(a) Illustration of the Ridge regression. The

constraint is ‖β‖22 ≤ s.

β1

β2

(b) Illustration of the Lasso regression. The

constraint is ‖β‖1 ≤ s.

(XTX + λIp)β = XTy ⇒ β̂ = (XTX + λIp)
−1XTy.

We see that the term λIp is added to the denominator compared to OLS, so indeed β is now

smaller.

2.3 Lasso Regression

In lasso regression, the objective function to be minimized is

`(β) = ‖y −Xβ‖2 + λ‖β‖1. (5)

where ‖β‖1 =
∑p

j=1 |βj|. We see from Fig. 1b that since the constraint is a polygon, lasso

regression may force some of the coefficients to be exactly zero. We comment that there is

no closed-form formula for the solution, and to train the model we have to rely on algorithms

such as coordinate descent.

It is also possible to give a Bayesian interpretation of ridge and lasso. Recall the posterior

of the parameter β given data {xi, yi}ni=1 is

p (β | {xi, yi}ni=1) =
p(β)p ({xi, yi}ni=1 | β)

p ({xi, yi}ni=1)
=
p(β)p ({yi}ni=1 | {xi}ni=1,β)

p ({yi}ni=1 | {xi}ni=1)

=
p(β)

∏n
i=1 p(yi | xi,β)

p ({yi}ni=1 | {xi}ni=1)
∝ p(β)

n∏
i=1

p(yi | xi,β).

Assuming p(yi | xi,β) is Gaussian with mean xTi β and variance σ2,

8

• if we assume independent uniform priors βj ∼ U(−M,M) for j = 1, . . . , p then the

density of βj is constant, so

arg max
β

p (β | {xi, yi}ni=1) = arg max
β

[
constant · exp

{
−

n∑
i=1

(yi − xTi β)2/2σ2

}]

= arg min
β

[
n∑
i=1

(yi − xTi β)2

]
.

We get the OLS estimates of the coefficients.

• if we assume independent Gaussian priors βj ∼ N (0, c) for j = 1, . . . , p then

arg max
β

p (β | {xi, yi}ni=1) = arg max
β

[
exp

{
−

p∑
j=1

β2
j /2c

}
· exp

{
−

n∑
i=1

(yi − xTi β)2/2σ2

}]

= arg min
β

[
n∑
i=1

(yi − xTi β)2 + (σ2/c)

p∑
j=1

β2
j

]

so that we recover the ridge regression.

• if we assume independent Laplace priors p(βj) ∼ L(0, b) with p(βj) = e−
∑p

j=1 |βj |/b for

j = 1, . . . , p, then we will get

arg max
β

p (β | {xi, yi}ni=1) = arg max
β

[
exp

{
−

p∑
j=1

|βj|/b

}
· exp

{
−

n∑
i=1

(yi − xTi β)2/2σ2

}]

= arg min
β

[
n∑
i=1

(yi − xTi β)2 + (2σ2/b)

p∑
j=1

|βj|

]

so that we recover the lasso regression.

9

https://en.wikipedia.org/wiki/Laplace_distribution

3 Linear Methods for Classification

3.1 Logistic Regression

We first model the probability of the two labels, so we represent them as {0, 1} instead of

{−1, 1}. In logistic regression, we model p(x) = P{y = 1 | x} = 1− P{y = 0 | x} as

p(x) = σ(βTx)

where x = (x1, . . . , xp)
T , β = (β1, . . . , βp)

T , and σ(x) = 1/(1 + e−x) is the sigmoid function,

so that p(x) ∈ [0, 1]. Alternatively, we model the log-odds as a linear combination of the

inputs:

log

[
p(x)

1− p(x)

]
= βTx.

After we trained the model, we can use it to predict the class of a new data point by

f(x) =

{
1 if p(x) > τ

0 if p(x) ≤ τ

where τ ∈ [0, 1] is some threshold. It is clear that logistic regression draws a hyperplane

in the input space: σ is monotonically increasing, so σ(βTx1) = σ(βTx2) if and only if

βTx1 = βTx2.

3.1.1 Estimation of Parameters

MLE We can estimate β using maximum likelihood. The log-likelihood is

`(β) = log
n∏
i=1

p(xi)
yi(1− p(xi))1−yi

=
n∑
i=1

{yi log p(xi) + (1− yi) log[1− p(xi)]}

=
n∑
i=1

{
yiβ

Txi + log[1− p(xi)]
}
.

(6)

Recalling σ′ = σ(1− σ), the gradient and Hessian matrix of `(β) is easily computed as

∂`(β)

∂β
=

n∑
i=1

xi[yi−p(xi)] = XT (y−p),
∂`(β)

∂β∂βT
= −

n∑
i=1

xix
T
i p(xi)[1−p(xi)] = −XTWX,

where

• X is the n× (p+ 1) data matrix with rows xTi , i = 1, . . . , n;

10

• y = (y1, . . . , yn)T and p = [p(x1), . . . , p(xn)]T ;

• W is the (n× n) diagonal matrix with wii = p(xi)[1− p(xi)].

Since the gradient is not a linear function of β, it is not easy to obtain a closed-form formula

for β by setting the gradient to 0. It is informative to see how we maximize `(β) iteratively

via Newton-Raphson:

β(t+1) = β(t) −
[
∂`(β)

∂β∂βT

]−1

β(t)

[
∂`(β)

∂β

]
β(t)

.

We find

β(t+1) = β(t) + (XTW (t)X)−1XT (y − p(t))

=
[
(XTW (t)X)−1(XTW (t)X)

]
β(t) + (XTW (t)X)−1XT

[
W (t)W (t)−1

]
(y − p(t))

= (XTW (t)X)−1XTW (t)[Xβ(t) +W (t)−1

(y − p(t))]

= (XTW (t)X)−1XTW (t)z(t), where z(t) = [Xβ(t) +W (t)−1

(y − p(t))]

and W (t) and p(t) are W and p evaluated at β(t). This is the iteratively re-weighted least

squares : at each step we select β that minimizes the weighted least squares

n∑
i=1

w
(t)
ii (z

(t)
i − xTi β)2 = (z(t) −Xβ)TW (t)(z(t) −Xβ)

where z(t) is the adjusted response.

So we can view the training process of logistic regression as repeatedly fitting least squares

(drawing straight lines) until convergence, each time updating the response data and the

weights.

Loss Function We can also define the −`(β) as the loss function, and maximizing the

log-likelihood is equivalent to minimizing the loss function. For each term in Eq. (6),

Li(β) = −yiβTxi − log[1− p(xi)] = −yiβTxi − log(1 + eβ
Txi)−1

= −yiβTxi + log(1 + eβ
Txi)

= log(e−yiβ
Txi) + log(1 + eβ

Txi)

= log
(
e−yiβ

Txi + e(1−yi)βTxi

)
.

We can see that letting y ∈ {0, 1} does not give us a very easy-to-remember formula. So at

this point we try another representation of the response: we let y ∈ {−1, 1}, and let p(x) =

P{y = 1 | x} = σ(βTx). Because of the property of the sigmoid function σ(−x) = 1− σ(x),

11

we have P{y = −1 | x} = 1 − P{y = 1 | x} = p(−x). So using this representation the

likelihood of each data point is p(xi, yi) = σ(yiβ
Txi). The log-likelihood of the data is

`(β) = log
n∏
i=1

p(xi, yi) = log
n∏
i=1

σ(yiβ
Txi) =

n∑
i=1

log σ(yiβ
Txi)

=
n∑
i=1

log
(

1 + e−yiβ
Txi

)−1

= −
n∑
i=1

log
(

1 + e−yiβ
Txi

)
.

Now we can see that

Li(β) = log
(

1 + e−yiβ
Txi

)
is a natural loss function. Maximizing the likelihood is equivalent to minimizing the loss.

The gradient of this new `(β) is ∇`(β) = XTY (1 − p) and the Hessian is ∇2`(β) =

−(XTY)W (XTY), where Y is the diagonal matrix with yi, i = 1, . . . , n on its diagonal.

So under this representation we can still interpret the training process as repeatedly doing

least-squares.

3.1.2 More than two classes

Multinomial logistic regression is also called softmax regression. When we have to give

probabilities on k different classes, we have to specify at least k−1 probabilities. The model

is

pj(x) =
exp(βTj x)∑k
i=1 exp(βTi x)

, j = 1, . . . , k.

To train the model we can use MLE, or equivalently use cross-entropy as the loss function.

3.2 Generative Learning

In generative learning, we take an indirect approach to do classification. Rather than learning

a function f : Rp → [0, 1] and use it to model the probability P{y | x}, we model the

distribution of the inputs P{x | y} under different classes y, as well as the distribution of the

labels P{y}, then we use Bayes’s rule

P{y | x} =
P{x | y}P{y}

P{x}
=

P{x | y}P{y}∑
y

P{x | y}P{y}
(7)

to model the probability of y given x. To make prediction, we select the largest P{y | x},
i.e.

C(x) = arg max
y

P{y | x} = arg max
y

P{x | y}P{y}
P{x}

= arg max
y

P{x | y}P{y}.

12

Model training is simple: given our setup, what we need to learn is the parameters of the

distributions of x and y. So we can use maximum likelihood estimation to get the parameters

from the data, and then we can use the estimated parameters to make predictions.

3.2.1 Gaussian Discriminant Analysis

In Gaussian discriminant analysis (GDA), we assume the features in each class have multi-

variate normal distributionN (µy,Σy) and the labels have categorical distribution (p1, . . . , pk).

In linear discriminant analysis (LDA) it is assumed that the normal distributions for each

class has the same variance, but only differ in their means. In quadratic discriminant analysis

(QDA) the normal distribution of each class can have different means and variances.

The (maximum likelihood) estimation of parameters is of no difficulty:

• µ̂y is the mean of the features in each class;

• p̂i = ni/n where ni is the count of class i in the training data;

• Σ̂ = (1/n)
∑n

i=1(xi − µyi)(xi − µyi)T for LDA;

• Σ̂y = (1/n)
∑n

i=1 I(yi = y)(xi − µyi)(xi − µyi)T for QDA.

Let’s first see the case for one predictor and two classes, and then for p > 1 and y ∈
{1, . . . , k}.

LDA, p = 1 and y ∈ {1, 2} The Gaussian density is

fy(x) =
1√
2πσ

exp

{
−(x− µy)2

2σ2

}
, y = 1, 2.

We predict y = 1 if and only if

p1f1(x) > p2f2(x)

⇓
log p1 + log f1(x) > log p2 + log f2(x)

⇓

log p1 −
(x− µ1)2

2σ2
> log p2 −

(x− µ2)2

2σ2

⇓(
log p1 −

1

2

µ2
1

σ2

)
+
µ1

σ2
x >

(
log p2 −

1

2

µ2
2

σ2

)
+
µ2

σ2
x.

We see that the decision boundary is linear.

13

LDA, p = 1 and y ∈ {1, . . . , k} The Gaussian density is

fy(x) =
1√
2πσ

exp

{
−(x− µy)2

2σ2

}
, y = 1, . . . , k.

We predict label j ∈ {1, . . . , k} if and only if

pjfj(x) > pifi(x) ∀i 6= j

⇓(
log pj −

1

2

µ2
j

σ2

)
+
µj
σ2
x >

(
log pi −

1

2

µ2
i

σ2

)
+
µi
σ2
x ∀i 6= j.

LDA, p > 1 and y ∈ {1, . . . , k} The multivariate Gaussian density is

fy(x) =
1

(2π)p/2|Σ|1/2
exp

{
−(x− µy)TΣ−1(x− µy)

2

}
, y = 1, . . . , k.

Similar to the previous cases, we predict j if

pjfj(x) > pifi(x) ∀i 6= j

⇓
log pj + log fj(x) > log pi + log fi(x)

⇓

log pj −
1

2
(x− µj)TΣ−1(x− µj) > log pi −

1

2
(x− µi)TΣ−1(x− µi)

⇓(
log pj −

1

2
µTj Σ−1µj

)
+ xTΣ−1µj >

(
log pi −

1

2
µTi Σ−1µi

)
+ xTΣ−1µi.

The decision boundary is again linear. Let us call

δy(x) := log(pyfy(x)) =

(
log py −

1

2
µTy Σ−1µy

)
+ xTΣ−1µy

the discriminant function. It is a linear function of x. The prediction rule is

C(x) = arg max{δ1(x), δ2(x), . . . , δk(x)}.

QDA, p > 1 and y ∈ {1, . . . , k} If we allow the Gaussian distribution in each class to

have a different variance, then the discriminant function becomes

δy(x) := log(pyfy(x)) =

(
log py −

1

2
log |Σy|

)
− 1

2
(x− µy)TΣ−1

y (x− µy).

14

We see that the decision boundary is now quadratic.

Once we have the discriminant functions, we can get the probabilities of y given x (Eq. (7))

as

P{y | x} =
pyfy(x)
k∑
y=1

pyfy(x)

=
eδy(x)

k∑
y=1

eδy(x)

.

We see that the model of GDA has the same form as logistic regression. The two model

differ in their estimation of parameters. In logistic regression no assumption is made on

distribution of the inputs, and we use maximum likelihood to estimate the parameters.

Thus logistic regression is more robust, but it also requires more training data.

3.2.2 Naive Bayes

In naive Bayes model, we take the same strategy as explained at the beginning of Section 3.2,

but the additional assumption is that in each class, the distributions of the features are

independent, namely for x = (x1, . . . , xp)

P{x | y} = P{x1 | y}P{x2 | y} · · ·P{xp | y}.

Thus, we can specify a distribution fy(xi) for each feature xi, i = 1, . . . , p. Then we can

estimate its parameters using MLE, ignoring other variables. When we get the estimated

distribution for each feature, we can multiply them up to get the distribution of the inputs.

To make prediction, we calculate

δy(x) = log(pyfy(x)) = log(py) + log(fy(x)) = log(py) + log

p∏
i=1

fy(xi)

= log(py) +

p∑
i=1

log fy(xi)

and we select the largest δy(x):

C(x) = arg max{δ1(x), δ2(x), . . . , δk(x)}.

For example, if we assume each feature follow a Gaussian distribution with different mean

and variance, then the discriminant function is

δy(x) = log py −
p∑
i=1

(xi − µy)2

2σ2
y

so the decision boundary is quadratic.

We can see that naive Bayes model can conveniently handle data with both quantitative

and qualitative variables.

15

4 Beyond Linearity

In this section, we assume the input x is one-dimensional.

The basis expansion model is

y = β0 + β1b1(x) + · · ·+ βpbp(x) + ε

where b1(·), . . . , bp(·) are fixed and known.

• Polynomial regression: bj(x) = xj.

• Step function regression: bj(x) = 1(cj ≤ x ≤ cj+1).

• Piecewise polynomial regression: bj(x) = xj1(cj ≤ x ≤ cj+1). The problem is that

there are non-continuities at the knots. To address this problem we introduce regression

and smoothing splines.

Splines use different polynomials to fit different regions in the input space, but at the

same time it ensures that the boundaries between those different polynomials are continuous

or smooth. Thus, it adds flexibility to the linear regression model, while maintaining the

local constancy assumption.

Formally, letting {ξ1, . . . , ξK} denote a set of knots, a spline f(x) of order d + 1 is a

piecewise polynomial of degree d that has continuous derivatives up to order d− 1. We can

use the truncated power basis

bj(x) = xj, j = 1, . . . , d, bd+k(x) = (x− ξk)d+ =

{
(x− ξk)d, x > ξk

0, x ≤ ξk,
k = 1, . . . , K.

so that the model is

y = β0 + β1x+ · · ·+ βdxd + βd+1(x− ξ1)d+ + · · ·+ βd+K(x− ξK)d+ + ε.

For example, a linear spline with one knot ξ1 is f(x) = β0+β1x+β2(x−ξ1)+. When x ≤ ξ1

it is f(x) = β0 +β1x; when x ≥ ξ1 it is f(x) = β0 +β1x+β2(x−ξ1) = (β0−β2ξ1)+(β1 +β2)x.

4.1 Cubic Splines

The cubic spline model with knots {ξ1, . . . , ξK} is

f(x) = β0 + β1x+ β2x
2 + β3x

3 + β4(x− ξ1)3
+ + · · ·+ β3+K(x− ξK)3

+ (8)

16

From Eq. (8) one can check that

f(ξ−k) = β0 +
3∑
i=1

βiξ
i
k +

∑
i<k

β4+i(ξk − ξi)3
+ = f(ξ+

k),

f ′(ξ−k) = β1 +
3∑
i=2

iβiξ
i−1
k +

∑
i<k

3β4+i(ξk − ξi)2
+ = f ′(ξ+

k),

f ′′(ξ−k) = 2β2 + 6β3ξk +
∑
i<k

6β4+i(ξk − ξi)+ = f ′′(ξ+
k).

for k = 1, . . . , K.

4.2 Natural Cubic Splines

A problem with cubic spline is that the 3rd degree polynomial at the end of the data (i.e.

when x → ±∞) is very erratic. Natural cubic spline adds the constraint on top of cubic

spline that the function should be linear outside the range [ξ1, ξK].

One can obtain the natural cubic spline model by using the following basis

N1(x) = 1, N2(x) = x,N2+k(x) =
(x− ξk)3

+ − (x− ξK)3
+

ξK − ξk
−

(x− ξK−1)3
+ − (x− ξK)3

+

ξK − ξK−1

for k = 1, . . . , K − 2. The model is

y = β0N1(x) + β1N2(x) + β2N3(x) + · · ·+ βK−1NK(x) + ε

and from this we can use least squares to estimate the coefficients.

The basis is obtained as follows. We start from a cubic spline

f(x) =
3∑
i=0

βix
i +

K∑
k=1

θk(x− ξk)3
+ (9)

and add the two constraints

x ≤ ξ1 ⇒ f ′′(x) = 2β2 + 6β3x = 0 (10)

x ≥ ξK ⇒ f ′′(x) = 2β2 + 6β3x+ 6
K∑
k=1

θk(x− ξk) = 0 (11)

From Eq. (10) β2 = β3 = 0, and from Eq. (11) x
∑K

k=1 θk =
∑K

k=1 θkξk = 0 we get
∑K

k=1 θk =

0 and
∑K

k=1 θkξk = 0. We further have

θK = −
K−1∑
k=1

θk (12)

17

and

0 =
K∑
k=1

θk(ξK − ξk) =
K−1∑
k=1

θk(ξK − ξk) ⇒ θK−1 = −
K−2∑
k=1

θk
ξK − ξk
ξK − ξK−1

. (13)

Take Eq. (12) and Eq. (13) into Eq. (9), we get

f(x) = β0 + β1x+
K−1∑
k=1

θk(x− ξk)3
+ − (x− ξK)3

+

K−1∑
k=1

θk

= β0 + β1x+
K−1∑
k=1

θk[(x− ξk)3
+ − (x− ξK)3

+]

= β0 + β1x+
K−1∑
k=1

θk(ξK − ξk) ·
[(x− ξk)3

+ − (x− ξK)3
+]

ξK − ξk

= β0 + β1x+
K−2∑
k=1

θk(ξK − ξk) ·
[(x− ξk)3

+ − (x− ξK)3
+]

ξK − ξk

+ θK−1(ξK − ξK−1) ·
[(x− ξK−1)3

+ − (x− ξK)3
+]

ξK − ξK−1

= β0 + β1x+
K−2∑
k=1

β1+k

[
(x− ξk)3

+ − (x− ξK)3
+

ξK − ξk
−

(x− ξK−1)3
+ − (x− ξK)3

+

ξK − ξK−1

]
= β0N1(x) + β1N2(x) + β2N3(x) + · · ·+ βK−1NK(x).

How do we determine the knots? In practice it is more common to choose the number of

knots via cross–validation and then place knots at uniform quantiles of the input.

4.3 Smoothing Splines

Smoothing splines are obtained by minimizing the penalized RSS function

n∑
i=1

[yi − f(xi)]
2 + λ

∫ ∞
−∞

f ′′(x)2dx, λ ≥ 0

within the space of C2 functions. It can be shown that the solution is a natural cubic

spline with knots at x1, . . . , xn. Thus, knowing that the solution has the form f(x) =∑n
j=1 βj−1Nj(x), we can re-formulate the problem as minimizing

(y −Nβ)T (y −Nβ) + λβTΩNβ

where N[ij] = Nj(xi) and ΩN [jk] =
∫
N ′′j (x)N ′′k (x)dx. The solution can be easily obtained

by noticing that the above function is the same as the one of the ridge regression, with the

only difference that Ip is replaced by ΩN . Hence

β̂ = (NTN + λΩN)−1NTy, f̂(x) =
n∑
j=1

β̂j−1Nj(x).

18

Note that this is not the same natural cubic spline that one would get if one applied the basis

function approach with knots at x1, . . . , xn. Rather, it is a shrunken version of such a natural

cubic spline, where the value of the tuning parameter λ controls the level of shrinkage.

The predictions for the training set are

ŷ = N (NTN + λΩN)−1NTy = Sλy.

Hence, smoothing splines are linear smoothers and Sλ plays the same role of the projection

matrix H in linear regression. The effective degrees of freedom of smoothing splines is

defined as

trace(Sλ) =
n∑
i=1

Sλ[ii].

The effective degrees of freedom depends on λ. As λ → ∞ the effective degrees of freedom

go to 2, while when λ = 0 the effective degrees of freedom are n.

Similar to linear regression, there is also a formula for computing the leave-one-out cross-

validation MSE for selecting λ:

MSE(λ) =
1

n

n∑
i=1

[yi − f (−i)
λ (xi)]

2 =
1

n

n∑
i=1

[
yi − ŷi

1− Sλ[ii]

]2

.

4.4 Local Regressions

There are some non-parametric form of regressions, all making use of local information:

• K-nearest neighbors regression:

ŷ = f̂(x) = Ave[yi | xi ∈ NK(x)]

where NK(x) is the neighborhood of x containing the K closest training data. K-

nearest neighbors estimates change in a discrete way leading to a non-smooth f̂ .

• Nadaraya–Watson kernel–weighted average:

ŷ = f̂(x) =

n∑
i=1

Kλ(x,xi)yi

n∑
i=1

Kλ(x,xi)
with Kλ(x,xi) = D(‖x− xi‖/λ).

D : R → [0, 1] is a kernel symmetric around the origin, whereas λ is a bandwidth

or smoothing parameter which defines the width of the local neighborhood. Larger λ

implies lower variance (smoothness) but higher bias.

Unlike K–nearest neighbors, kernel methods rely on a weighted average to predict y at

a given x. In this average, the closer xi to x, the higher yi contribute to the estimate.

19

This gives us a smoother estimate. However, unlike K–nearest neighbors, the width of

the neighborhood does not depend on the sparsity of the data. If we want to include

this feature, we can allow the smoothing parameter to vary with x (“loess”).

• Locally weighted linear regression: there is a problem with locally weighted averages:

they can be badly biased on the boundaries of the domain, because of the asymmetry of

the kernel in that region. Locally weighted linear regression solves a separate weighted

least squares problem at each target point x:

arg min
βx

∑
i=1

Kλ(x,xi)(yi − βTxxi)2 = argmin
βx

(y −Xβx)TWx(y −Xβx)

where Wx is a diagonal matrix with Wx[ii] = Kλ(x,xi) for i = 1, . . . , n. The solution

is

β̂x = (XTWxX)−1XTWxy.

20

5 Decision Tree Learning

5.1 Decision Trees

Regression and classification trees divide the input space into M (a hyperparameter) distinct

non-overlapping regions R1, . . . , RM . For every new input that falls into the region Rm, we

make the same prediction cm, which is the mean or mode for the training samples in Rm.

Namely, we aim to learn a function of the form

f(x) =
M∑
m=1

cm1(x ∈ Rm).

For building a regression tree, we would like to divide the input space in so as to minimize

the RSS

RSS =
M∑
m=1

RSSm =
M∑
m=1

∑
i:xi∈Rm

(yi − cm)2.

However, this is computationally infeasible (NP-complete), so we use a top-down greedy

method, the recursive binary splitting method, to train our decision tree model. We first

do a single split along a single variable so as to minimize the RSS resulted from the split.

Namely, we find a variable xi ∈ {x1, . . . , xp} and a split s (among all n splits) so as to

minimize ∑
i:xi∈R1(j,s)

(yi − cR1)
2 +

∑
i:xi∈R2(j,s)

(yi − cR2)
2

where R1(j, s) = {x : xj < s} and R2(j, s) = {x : xj ≥ s}. Thus, in the first step we have

to do pn search (p is the number of variables, n is the number of training samples). We

can then do the same thing recursively in each region generated by the first step. Note that

sometimes we may prefer not to split a node: if all the split of a node offer no reduction in

the loss, then we do not have reason to perform the split. Thus, the decision tree built in

the end is not necessary a complete binary tree. It may be unbalanced.

For building a classification tree, we can replace RSS by other criteria like the miss-

classification rate. We generally predict the label of a sample falling in region Rm as the

mode of the labels in Rm, or equivalently the label with the largest proportion:

cm = arg max
k
{pm,k} with pm,k =

1

|Rm|
∑

i:xi∈Rm

1(yi = k), k = 1, . . . , K.

Hence, for the training samples falling in region Rm, we will classify correctly all samples

with the most common label, and incorrectly for samples with all the other labels. The

miss-classification rate in region Rm is thus one minus the proportion of the most common

21

label:

Em =
1

|Rm|
∑

i:xi∈Rm

I(yi 6= arg max
k
{pm,k}) = 1−max

k
{pm,k}.

We could use the miss-classification rate in place of the RSS to fit the classification tree.

However, it turns out that classification error is not sufficiently sensitive for tree-growing,

and in practice two other measures are preferable.

• The Gini index is

Gm =
M∑
k=1

pm,k(1− pm,k).

The Gini index is a measure of total variance across the K classes. It is not hard to

see that the Gini index takes on a small value if all of the pm,k’s are close to zero or

one. For this reason the Gini index is referred to as a measure of node purity – a small

value indicates that a node contains predominantly observations from a single class.

• The cross-entropy is

Dm = −
K∑
k=1

pm,k log(pm,k).

One can show that the entropy will take on a value near zero if the pm,k’s are all near

zero or near one. Therefore, like the Gini index, the entropy will take on a small value

if the node is pure. In fact, it turns out that the Gini index and the entropy are quite

similar numerically.

To see the advantages and disadvantages of trees, we quote the following from https://scikit-

learn.org/stable/modules/tree.html:

Some advantages of decision trees are:

• Simple to understand and to interpret. Trees can be visualized.

• Requires little data preparation. Other techniques often require data nor-

malization, dummy variables need to be created and blank values to be

removed. Note however that this module does not support missing values.

• The cost of using the tree (i.e., predicting data) is logarithmic in the number

of data points used to train the tree.

• Able to handle both numerical and categorical data. Other techniques are

usually specialized in analyzing datasets that have only one type of variable.

• Able to handle multi-output problems.

• Uses a white box model. If a given situation is observable in a model,

the explanation for the condition is easily explained by boolean logic. By

22

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html

contrast, in a black box model (e.g., in an artificial neural network), results

may be more difficult to interpret.

• Possible to validate a model using statistical tests. That makes it possible

to account for the reliability of the model.

• Performs well even if its assumptions are somewhat violated by the true

model from which the data were generated.

The disadvantages of decision trees include:

• Decision-tree learners can create over-complex trees that do not generalize

the data well. This is called overfitting. Mechanisms such as pruning (not

currently supported), setting the minimum number of samples required at

a leaf node or setting the maximum depth of the tree are necessary to avoid

this problem.

• Decision trees can be unstable because small variations in the data might

result in a completely different tree being generated. This problem is miti-

gated by using decision trees within an ensemble.

• The problem of learning an optimal decision tree is known to be NP-

complete under several aspects of optimality and even for simple concepts.

Consequently, practical decision-tree learning algorithms are based on heuris-

tic algorithms such as the greedy algorithm where locally optimal decisions

are made at each node. Such algorithms cannot guarantee to return the

globally optimal decision tree. This can be mitigated by training multiple

trees in an ensemble learner, where the features and samples are randomly

sampled with replacement.

• There are concepts that are hard to learn because decision trees do not

express them easily, such as XOR, parity or multiplexer problems.

• Decision tree learners create biased trees if some classes dominate. It is

therefore recommended to balance the dataset prior to fitting with the de-

cision tree.

5.2 Bagging

Bagging (bootstrap aggregating) can be used to reduce variance. In bagging , B bootstrap

sets of samples from the training data are generated. A tree fb(x) is then fit to each of them.

For regression, the final prediction is the average of the predictions made by the B trees:

f(x) =
1

B

B∑
b=1

fb(x).

23

For classification, the final prediction is the mode of the B predictions

f(x) = mode{f1(x), . . . , fb(x)}.

On average, each bagged tree makes use of around two-thirds of the observations. The

remaining one-third of the observations not used to fit a given bagged tree are referred to as

the out-of-bag (OOB) observations. We can predict the response for the ith observation using

each of the trees in which that observation was OOB. This will yield around B/3 predictions

for the ith observation. In order to obtain a single prediction for the ith observation, we

can average these predicted responses (if regression is the goal) or can take a majority vote

(if classification is the goal). This leads to a single OOB prediction for the ith observation.

An OOB prediction can be obtained in this way for each of the n observations, from which

the overall OOB MSE (for a regression problem) or classification error (for a classification

problem) can be computed. The resulting OOB error is a valid estimate of the test error for

the bagged model, since the response for each observation is predicted using only the trees

that were not fit using that observation.

5.3 Random Forests

If the trees constructed in bagging are highly correlated, then averaging over them does not

yield a great reduction in variance. Random forest is an improvement over bagging that

attempts to de-correlate the trees. In random forest method, we bootstrap B data sets from

the training data set, and grow a tree on each data set. When building these decision trees,

each time a split in a tree is considered, a random sample of m predictors is chosen as split

candidates from the full set of p predictors. The split is allowed to use only one of those m

predictors. A fresh sample of m predictors is taken at each split, and typically we choose

m ≈ √p – that is, the number of predictors considered at each split is approximately equal

to the square root of the total number of predictors.

The main difference between bagging and random forests is the choice of predictor subset

size m. For instance, if a random forest is built using m = p, then this amounts simply to

bagging.

24

6 Gradient Boosting

6.1 Motivations

We follow intuitions from Friedman 2001. Recall that in gradient descent, when we want to

minimize some function Φ(P), we solve the problem as

P ∗ =
M∑
m=0

pm

where p0 is an initial guess and

pm = −ρm∇Φ(Pm−1) with Pm−1 =
m−1∑
i=0

pi

and ρm = arg minρ Φ(Pm−1 − ρ∇Φ(Pm−1)). We can take an analogous approach when we

want to find a function F : Rp → R that minimizes the (expected) loss Φ(F) = E(x,y)L(y, F).

We can let

F ∗ =
M∑
m=0

fm

where f0 is an initial guess and

fm = −ρm∇Φ(Fm−1) with Fm−1 =
m−1∑
i=0

fi

and ρm = arg minρ Φ(Fm−1 − ρ∇Φ(Fm−1)).

In reality, where we only have finite amount of data {xi, yi}ni=1, we replace the (unknown)

objective function by the empirical loss Φ(F) =
∑n

i=1 L(yi, F (xi)). However, now we are

only able to calculate the first derivative at finite set of points x1, . . . ,xn:

fm(xi) = −ρm ·
∂L(yi, F (xi))

∂F (xi)

∣∣∣∣
F (x)=Fm−1(x)

i = 1, . . . , n

so we do not know the value of fm at other points x ∈ Rp. So at this point we have to use some

parametric function h(x;am) to approximate fm(x). We choose am so that {h(xi;am)}ni=1

is as parallel to the negative gradient {−∂L(yi, F (xi))/∂F (xi)}ni=1 as possible. This we can

do using least squares. This gives rise to the gradient boosting algorithm Algorithm 6.1.1.

6.2 Boosting Schemes

Let’s now see this algorithm with different loss functions and base learners h(x;a).

25

Algorithm 6.1.1 Gradient Boosting

1: F0(x) = arg min
ρ

n∑
i=1

L(yi, ρ)

2: for m = 1 to M do

3: ỹi = − ∂L(yi, F (xi))

∂F (xi)

∣∣∣∣
F (x)=Fm−1(x)

, i = 1, . . . , n

4: am = arg min
a,β

n∑
i=1

[ỹi − βh(xi;a)]2

5: ρm = arg min
ρ

n∑
i=1

L(yi, Fm−1(xi) + ρh(xi;am))

6: Fm(x) = Fm−1(x) + ρmh(x;am)

7: return FM(x) = F0(x) +
M∑
m=1

ρmh(x;am).

6.2.1 LS-Boost

If our loss function is L(y, F) = (y−F)2/2, then the negative gradient is ỹi = yi−Fm−1(xi),

i.e. the residuals. So with this loss function the algorithm performs iterative fitting of current

residuals.

1: LS-Boost

2: F0 = ȳ

3: for m = 1 to M do

4: ỹi = yi − Fm−1(xi), i = 1, . . . , n

5: (ρm,am) = arg mina,ρ
∑n

i=1[ỹi − ρh(xi;a)]2

6: Fm(x) = Fm−1(x) + ρmh(x;am)

7: return FM(x)

6.2.2 LAD-Boost

For the least absolute deviation L(y, F) = |y − F |, one has

ỹi = − ∂L(yi, F (xi))

∂F (xi)

∣∣∣∣
F (x)=Fm−1(x)

= sign(yi − Fm−1(xi)).

26

This implies that h(x;a) is fit (by least-squares) to the sign of the current residuals. Also

the line search is

ρm = arg min
ρ

n∑
i=1

|yi − Fm−1(xi)− ρh(xi;am)|

= arg min
ρ

n∑
i=1

|h(xi;am)| ·
∣∣∣∣yi − Fm−1(xi)

h(xi;am)
− ρ
∣∣∣∣

= medianW

{
yi − Fm−1(xi)

h(xi;am)

}n
i=1

, wi = |h(xi;am)|.

Inserting these results into Algorithm 6.1.1 yields an algorithm for least absolute deviation

boosting, using any base learner h(x;a).

1: LAD-Boost

2: F0 = median {yi}n1
3: for m = 1 to M do

4: ỹi = sign(yi − Fm−1(xi)), i = 1, . . . , n

5: am = arg mina,ρ
∑n

i=1[ỹi − ρh(xi;a)]2

6: ρm = medianW {(yi − Fm−1(xi))/h(xi;am)}ni=1 , wi = |h(xi;am)|.
7: Fm(x) = Fm−1(x) + ρmh(x;am)

8: return FM(x)

6.2.3 AdaBoost

What about the exponential loss function L(y, F) = e−yF when y ∈ {−1, 1}? When y and

F have the same sign and F has large absolute value, then yF >> 0 so the loss function is

close to zero, while if y and F have different signs, −yF > 0 so the loss can be very large.

The negative gradient of L is

ỹi = − ∂L(yi, F (xi))

∂F (xi)

∣∣∣∣
F (x)=Fm−1(x)

= yie
−yiFm−1(xi).

Let ω
(m)
i = e−yiFm−1(xi) = L(yi, Fm−1) for i = 1, . . . , n. We see that ỹi = yiω

(m)
i for i =

1, . . . , n, namely the negative gradient at each step is the (positive or negative) loss at the

previous step. This makes sense: for example, if yi = 1 is positive and the loss ω
(m)
i is large,

this then implies Fm−1(xi) < 0 has a large absolute value, so on the next iteration we should

increase F (xi) by a large amount, to steer it at the positive direction.

We next fit
{
ỹi = yiω

(m)
i

}n
i=1

as in line 4 of Algorithm 6.1.1

am = arg min
a,β

n∑
i=1

[ỹi − βh(xi;a)]2 = arg min
a,β

n∑
i=1

[
yiω

(m)
i − βh(xi;a)

]2

. (14)

27

We can show that for any β > 0 the solution to Eq. (14) is the parameter am such that

am = arg min
a

n∑
i=1

ω
(m)
i I(yi 6= h(xi;a)), (15)

i.e. we should select a so as to minimize the weighted number of misclassifications. Indeed,

writing out the objective function it is (we omit the superscript in ω
(m)
i)

n∑
i=1

[yiωi − βh(xi;a)]2 =
∑

yi=h(xi;a)

(ωi − β)2 +
∑

yi 6=h(xi;a)

(ωi + β)2

=
∑

yi=h(xi;a)

(
ω2
i − 2ωi + β2

)
+

∑
yi 6=h(xi;a)

(
ω2
i + 2ωi + β2

)

= 2

 ∑
yi 6=h(xi;a)

ωi −
∑

yi=h(xi;a)

ωi

+
n∑
i=1

ω2
i + nβ2.

The term in the parenthesis is

∑
yi 6=h(xi;a)

ωi −
∑

yi=h(xi;a)

ωi =
n∑
i=1

ωiI(yi 6= h(xi;a))−
n∑
i=1

ωi (1− I(yi 6= h(xi;a)))

= 2
n∑
i=1

ωiI(yi 6= h(xi;a))−
n∑
i=1

ωi

so we see that minimizing the objective function in Eq. (14) is equivalent to minimizing the

objective function in Eq. (15). After we found such a parameter a∗m, we can then choose the

best ρm in line 5 of Algorithm 6.1.1:

ρm = arg min
ρ

n∑
i=1

L(yi, Fm−1(xi) + ρh(xi;a
∗
m))

= arg min
ρ

n∑
i=1

e−yi(Fm−1(xi)+ρh(xi;a
∗
m))

= arg min
ρ

n∑
i=1

ω
(m)
i e[−yih(xi;a

∗
m)]·ρ.

28

Let f(ρ) =
∑n

i=1 ω
(m)
i e[−yih(xi;a

∗
m)]·ρ. We set f ′(ρ) = 0:

f ′(ρ) =
n∑
i=1

[−yih(xi;a
∗
m)]ω

(m)
i e[−yih(xi;a

∗
m)]·ρ = −

∑
yi=h(xi;a∗

m)

ω
(m)
i e−ρ +

∑
yi 6=h(xi;a∗

m)

ω
(m)
i eρ = 0

⇓

eρ

 ∑
yi 6=h(xi;a∗

m)

ω
(m)
i

 = e−ρ

 ∑
yi=h(xi;a∗

m)

ω
(m)
i

⇓

e2ρ =

 ∑
yi=h(xi;a∗

m)

ω
(m)
i

/ ∑
yi 6=h(xi;a∗

m)

ω
(m)
i

⇓

ρ∗m =
1

2
log

∑
yi=h(xi;a∗

m) ω
(m)
i∑

yi 6=h(xi;a∗
m) ω

(m)
i

=
1

2
log

∑n
i=1 ω

(m)
i [1− I(yi 6= h(xi;a

∗
m))]∑n

i=1 ω
(m)
i I(yi 6= h(xi;a∗m))

=
1

2
log

1− errm
errm

where errm =
(∑n

i=1 ω
(m)
i I(yi 6= h(xi;a

∗
m))
)/(∑n

i=1 ω
(m)
i

)
is the weighted error rate.

After we obtained a∗m and ρ∗m, we then update the approximation as Fm(x) = Fm−1(x)+

ρ∗mh(x,a∗m). Let’s see what is the next gradient
{
yiω

(m+1)
i

}n
i=1

. Recall we have let ω
(m)
i =

e−yiFm−1(xi), so

ω
(m+1)
i = e−yiFm(xi) = e−yi[Fm−1(x)+ρ∗mh(xi;a

∗
m)]

= ω
(m)
i · eρ∗m·[−yih(xi;a

∗
m)]

= ω
(m)
i · eρ∗m·[2I(yi 6=h(xi;a

∗
m))−1]

= ω
(m)
i · e2ρ∗mI(yi 6=h(xi;a

∗
m))e−ρ

∗
m .

Removing the constant factor, this is equivalent to updating ω
(m)
i as

ω
(m+1)
i = ω

(m)
i · exp

{
log

1− errm
errm

· I(yi 6= h(xi;a
∗
m))

}
. (16)

For all data points {(xi, yi)} that are correctly classified (I(yi 6= h(xi;a
∗
m)) = 0), the

weight stays the same: ω
(m+1)
i = ω

(m)
i , while for all data points that are wrongly classified

(I(yi 6= h(xi;a
∗
m)) = 1), their weights are all multiplied by exp

[
log
(

1−errm
errm

)]
= 1−errm

errm
. If

the error rate errm is low at the current stage, then 1−errm
errm

is large, so we magnify those

wrongly classified samples. We require that the base learner is at least slightly better than

random guessing, so errm should be lower than 1/2, and consequently 1−errm
errm

should always

be larger than 1.

29

In summary, when we use the exponential loss to classify yi ∈ {−1, 1}, the gradient is

the labels times the losses, so when we fit the gradient we are fitting the labels magnified by

the loss. To calculate the loss of the current step we just need to multiply the previous loss

by a factor as in Eq. (16).

1: AdaBoost

2: Initialize the weights ωi = 1/n, i = 1, . . . , n

3: for m = 1 to M do

4: fit h(x,am) to
{
yiω

(m)
i

}n
i=1

that minimizes errm;

5: let ρm = log 1−errm
errm

;

6: update the weight as ω
(m+1)
i = ω

(m)
i · exp {ρm · I(yi 6= h(xi;am))} for i = 1, . . . , n.

7: return FM(x) =
∑M

m=1 ρmh(x;am).

6.3 Gradient Tree Boosting

Gradient tree boosting is also called gradient boosted regression trees (GBRT). When the

base learner is tree h(x;a) = h(x; {bj, Rj}Jj=1) =
∑J

j=1 bj1(x ∈ Rj), we can make a slight

improvement of the gradient boosting procedure. Recall we update our approximation as

Fm(x) = Fm−1(x) + ρm

J∑
j=1

bjm1(x ∈ Rjm),

but we can write it as

Fm(x) = Fm−1(x) +
J∑
j=1

γjm1(x ∈ Rjm)

with γjm = ρmbjm. We can first fit the tree to the gradient, obtaining {Rjm}Jj=1 and {bjm}Jj=1,

and then adjust the coefficient bjm of each region Rjm to γjm, so that

{γjm} = arg min
{γj}Jj=1

n∑
i=1

L

(
yi, Fm−1(xi) +

J∑
j=1

γj1(x ∈ Rjm)

)
.

Since regions are disjoint, we further have

γjm = arg min
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ).

To summarize, when we do gradient boosting with trees as base learners, we can first fit

the tree to the negative gradient using least-squares as usual, but we can then adjust the

prediction in each region so as to further decrease the loss, instead of doing a line search and

multiply the predictions in all regions by the same constant. For example, if we use trees

30

in LAD-Boost (Section 6.2.2), at each step we can fit a tree with J terminal nodes to the

current sign of the residuals {ỹi = sign(yi − Fm−1(xi))}i=1,...,n using least-squares criterion,

and then we change the prediction in each region from the mean of the predicted signs to

γjm = arg min
γ

∑
xi∈Rjm

|yi − Fm−1(xi)− γ| = medianx∈Rjm
{yi − Fm−1(xi)},

the median of the current residuals in the region.

1: LAD-TreeBoost

2: F0 = median {yi}n1
3: for m = 1 to M do

4: ỹi = sign(yi − Fm−1(xi)), i = 1, . . . , n

5: {Rjm}J1 = J-terminal node tree ({xi, ỹi}n1)

6: γjm = medianx∈Rjm
{yi − Fm−1(xi)}

7: Fm(x) = Fm−1(x) +
∑J

j=1 γjm1(x ∈ Rjm)

8: return FM(x)

6.4 Comments

Other Loss Functions One can also do gradient boosting or gradient tree boosting with

other loss functions, for example the Huber loss

L(y, F) =

1

2
(y − F)2 |y − F | ≤ δ

δ(|y − F | − δ/2) |y − F | > δ,

for which the negative gradient is

ỹi = − ∂L(yi, F (xi))

∂F (xi)

∣∣∣∣
F (x)=Fm−1(x)

=

{
yi − Fm−1(xi), |yi − Fm−1(xi)| ≤ δ,

δ · sign(yi − Fm−1(xi)), |yi − Fm−1(xi)| > δ,

or the negative binomial log-likelihood

L(y, F) = log(1 + exp(−2yF)), y ∈ {−1, 1},

or the multi-class cross-entropy

L({yk, Fk(x)}K1) = −
K∑
k=1

yk log pk(x)

31

where yk = 1(class = k) ∈ {0, 1} and pk(x) = P(yk = 1 | x) = exp(Fk(x))
/∑K

j=1 exp(Fj(x)).

But the specific updates are somewhat complicated, so we refer to the original paper Fried-

man 2001 for details.

Regularizations To control for overfitting, we can use shrinkage:

Fm(x) = Fm−1(x) + ν · ρmh(x;am), 0 < ν ≤ 1.

The two hyper-parameters ν and M are related: for smaller ν we need larger M .

32

7 Support Vector Machines

Support vector machine (SVM) is a classification method that aims to find a hyperplane to

separate the data as best as possible. When the data is not linearly separable, soft margins

can be used. Also, we can use kernel tricks to map the input data to high dimensional space,

in which the data may become easier to separate. In this section, we assume our data is

{(x1, y1), . . . , (xn, yn)} where yi ∈ {−1, 1}.
A hyperplane in p-dimensional space is defined via

f(x) = w1x1 + · · ·+ wpxp + b = wTx+ b = 0.

In SVM, after we found an appropriate hyperplane, the decision rule is

C(x) = sign(f(x)).

We have yif(xi) > 0 for correctly classified examples, so we want yif(xi) to be as large as

possible. Our optimization problem is

max
w,b

M

s.t. ‖w‖ = 1,

yi(w
Txi + b) ≥M, i = 1, . . . , n.

We can get rid of the constraint ‖w‖ = 1 by requiring

yi(w
Tx+ b)

‖w‖
= yi

[(
w

‖w‖

)T
x+

b

‖w‖

]
≥M, i = 1, . . . , n

or

yi(w
Txi + b) ≥M‖w‖, i = 1, . . . , n

If we replace w by kw for any k > 0, then the inequality does not change:

yi((kw)Tx+ b) ≥M‖kw‖, i = 1, . . . , n

⇓

SSk · yi(wTx+ b) ≥ SSk ·M‖w‖, i = 1, . . . , n 3

So we can set ‖w‖ = 1/M (i.e. let k = 1/(M‖w‖)). Maximizing M is equivalent to

minimizing ‖w‖ or ‖w‖2. The optimization problem can now be transformed as

min
w,b

1

2
‖w‖2

s.t. yi(w
Txi + b) ≥ 1, i = 1, . . . , n.

33

This is a quadratic programming problem. The Lagrangian is

L(w, b;α) =
1

2
‖w‖2 −

n∑
i=1

αi(yi(w
Txi + b)− 1). (17)

We set the gradient of the Lagrangian to zero:

∇wL(w, b;α) = w −
n∑
i=1

αiyixi = 0 (18)

∂

∂b
L(w, b;α) =

n∑
i=1

αiyi = 0 (19)

Take Eq. (18) and plug it into Eq. (17), we have

L(w, b;α) =
1

2

[
(α1y1x1 + · · ·+ αnynxn)T (α1y1x1 + · · ·+ αnynxn)

]
−

n∑
i=1

αi

yi
(n∑

j=1

αjyjxj

)T

xi + b

− 1

=

1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj −

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj − b

n∑
i=1

αiyi +
n∑
i=1

αi

=
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj.

We thus arrived at the dual problem

max
α

W (α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉

s.t. αi ≥ 0, i = 1, . . . , n
n∑
i=1

αiyi = 0.

The algorithm for solving the dual problem is presented in Section 7.2.

7.1 Soft Margins

To fit a hyperplane when the data is not linearly-separable, and to be less sensitive to outliers,

we reformulate the problem as

min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . , n.

ξi ≥ 0, i = 1, . . . , n.

34

The Lagrangian of the problem is

L(w, ξ, b;α,β) =
1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑
i=1

αi(yi(x
T
i w + b)− 1 + ξ)−

n∑
i=1

βiξi (20)

where α = (α1, . . . , αn) and β = (β1, . . . , βn) are Lagrangian multipliers with αi ≥ 0 and

βi ≥ 0 for i = 1, . . . , n. As before we set the gradient of the Lagrangian to zero, to get

∇wL(w, ξ, b;α,β) = w −
n∑
i=1

αiyixi = 0 (21)

∇ξL(w, ξ, b;α,β) = C −α− β = 0 (22)

∂

∂b
L(w, ξ, b;α,β) =

n∑
i=1

αiyi = 0. (23)

We plug these into Eq. (20), to obtain the dual problem

max
α

W (α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉 (24)

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n (25)
n∑
i=1

αiyi = 0. (26)

After adding regularization, the only change to the dual problem is that the constraint

αi ≥ 0 becomes 0 ≤ αi ≤ C.

7.2 The SMO Algorithm

We motivate the sequential minimal optimization algorithm (Platt 1998) by coordinate de-

scent. In coordinate descent, to maximize some function W (α1, α2, . . . , αn), we can first

optimize W with respect to α1, holding all other variables fixed. Then we optimize with

respect to α2 while holding α1, α3, . . . fixed. We always go parallel to the axes.

Return to our optimization problem Eqs. (24) to (26). Can we optimize Eq. (24) while

with respect to α1 while holding all other variables fixed? The answer is no because we have

the constraint Eq. (26), so that

α1y1 = −
n∑
i=2

αiyi ⇒ α1 = −y1

n∑
i=2

αiyi

by the fact that y1 ∈ {−1, 1} and hence y2
1 = 1. Hence α1 is determined by all other αi’s, so

if we were to hold α2, . . . , αn fixed then we can’t move α1 as well.

35

α1 = 0 α1 = C

α2 = 0

α2 = C

(a) y1 6= y2 ⇒ α2 = α1 ± k

α1 = 0 α1 = C

α2 = 0

α2 = C

(b) y1 = y2 ⇒ α2 = −α1 ± k

Figure 2: Illustration of the relationship between α1 and α2. The optimizer (α∗1, α
∗
2) lies on

the line segment inside the box [0, C]× [0, C].

So we must update at least two of them simultaneously. The idea of the SMO algorithm

is to exactly update two of the parameters at each iteration, and the key is that in this

situation we have an analytic solution to the optimization problem. Let’s say at some point

we want to optimize W (α1, α2, . . . , αn) with respect to α1 and α2, holding α3, . . . , αn fixed.

From Eq. (26) we first need to ensure

α1y1 + α2y2 = −
n∑
i=3

αiyi = k (27)

for some constant k. Specifically, When y1 6= y2, we have{
y1 = 1, y2 = −1 =⇒ α1 − α2 = k ⇒ α2 = α1 − k
y1 = −1, y2 = 1 =⇒ −α1 + α2 = k ⇒ α2 = α1 + k

and the graph of α1 and α2 is as Fig. 2a. When y1 = y2 we have{
y1 = 1, y2 = 1 =⇒ α1 + α2 = k ⇒ α2 = −α1 + k

y1 = −1, y2 = −1 =⇒ −α1 − α2 = k ⇒ α2 = −α1 − k

and the graph corresponds to Fig. 2b.

From α1y1 + α2y2 = k we can write α2 = (k − α1y1)y2. We substitute it into W to get

W (α1, α2, . . . , αn) = W (α1, (k − α1y1)y2, ᾱ3, . . . , ᾱn) = W (α1),

which is a quadratic function of α1. We can set its derivative to zero and obtain the “un-

clipped” solution α∗1. From Fig. 2 we see that L ≤ α1 ≤ H for some lower bound L and

upper bound H. If α∗1 < L, then we set it to L, while if α∗1 > H then we set it to H. Having

found α∗1, we can then use Eq. (27) to obtain the optimal solution α∗2.

36

We see that the SMO algorithm is very straightforward: at each step, we pick some αi

and αj to update next. We fix other variables, and then we will obtain an analytic solution

(α∗i , α
∗
j). We keep doing this until some convergence criteria is met.

7.3 Kernels

After we obtained the solution α∗ = (α∗1, . . . , α
∗
n) for the dual problem, we can obtain the

solution for w according to Eq. (18) as

w∗ =
n∑
i=1

α∗i yixi.

The optimal intercept b∗ can also be obtained. To make prediction, we calculate

f(x) = w∗Tx+ b∗ =

(
n∑
i=1

α∗i yixi

)T

x+ b∗

=
n∑
i=1

α∗i yi〈xi,x〉+ b∗.

(28)

Observe that, in solving the dual problem Eqs. (24) to (26), and in the prediction Eq. (28),

we only calculated the inner products between the inputs. The idea of kernels is to substitute

the inner product 〈xi,xj〉 by a kernel K(xi,xj) = 〈ϕ(xi), ϕ(xj)〉 for some mapping ϕ : Rn →
RN , where N is typically much higher than n, and is possibly infinity. In this way, we map

the input to some higher dimensional space, so that the data may become linearly separable,

but without first calculating and storing the transformations. Mercer’s theorem says that,

roughly, if K is symmetric and positive definite, meaning∫ ∫
K(x, y)f(x)f(y)dxdy ≥ 0

for square integrable functions f , then there is ϕ such that K(x, y) = 〈ϕ(x), ϕ(y)〉.
Popular kernels:

• d-th degree polynomial: K(x, x′) = (1 + 〈x,x′〉)d,

• Radial basis: K(x, x′) = exp(−γ‖x− x′‖2),

• Neural network: K(x, x′) = tanh(κ1〈x,x′〉+ κ2).

7.4 SVM for More than two classes

There are two strategies to apply SVM to multi-class classification problems:

37

https://en.wikipedia.org/wiki/Mercer%27s_theorem

• One-versus-all : fit K different two class SVM classifiers {f1(x), f2(x), . . . , fK(x)},
each class versus the rest, then classify x to the class for which fi(x) is the largest.

• One-versus-one: fit all the
(
K
2

)
pairwise classifiers fij(x). Then classify x to be the

class that wins most of the pairwise competitions.

38

Figure 3: Illustration of cross-validation. Figure from https://scikit-learn.org/stable/

modules/cross_validation.html.

8 Model Evaluation

8.1 Cross-Validation

Cross-validation is a way for estimating the test MSE or any test metric (like accuracy, AUC,

mean absolute error etc.) without sacrificing too much data in the training set. In k-fold

cross validation, the training set is randomly divided into k folds. For each fold i, we fit the

model on all other folds, and then compute the metric scorei on fold i. We do the same for

all k folds, and our final output is the average of all scorei’s:

score =
1

k

k∑
i=1

scorei.

See Fig. 3 for illustration. We may have these two purposes for performing cross-validation:

(1) in some situations, we want to know how well a given statistical learning procedure

can be expected to perform on independent data; in this case, the actual estimate of

the metric is of interest;

(2) but at other times we are interested only in the location of the minimum point in the

estimated test metric curve. This is because we might be performing cross-validation

39

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html

on a number of statistical learning methods, or on a single method using different levels

of flexibility, in order to identify the method that results in the lowest test error (e.g.

when we are seeking the optimal hyper-parameters). For this purpose, the location of

the minimum point in the estimated test metric curve is important (e.g. the hyper-

parameter), but the actual value of the estimated test metric curve is not.

There is a bias-variance trade-off for cross-validation:

• Since each time we use less data to train the model, the model can perform slightly

poorly on each fold, so our estimate of the test metric may be biased upward (e.g. we

may estimate a large test error while the true test error may not be as large).

• This bias is minimized when k = n, i.e. the leave-one-out (LOO) cross validation.

However, LOO often results in high variance as an estimator for the test error. Intu-

itively, since n− 1 of the n samples are used to build each model, models constructed

from folds are virtually identical to each other and to the model built from the entire

training set. Also, LOO is computationally far more expensive (however in the case of

linear or polynomial regression, there is a direct formula for cross-validated MSE :

MSE =
1

n

n∑
i=1

[
yi − ŷi
1− hi

]2

where ŷi is the prediction for yi from the OLS fit on all the data, and hi is the ith

diagonal element in the projection matrix H . This is like the classical MSE, but the

ith residual is divided by 1− hi.)

As a general rule, 5-fold or 10-fold cross-validation should be preferred.

There are also many variants of k-fold cross validation. For example, StratifiedKFold is

often used for classification problems. It returns stratified folds: each set contains approxi-

mately the same percentage of samples of each target class as the complete set. More variants

can be viewed at https://scikit-learn.org/stable/modules/cross_validation.html.

8.2 ROC curve

The receiver operating characteristic (ROC) curve is commonly used in machine learning to

measure the performance of a binary classifier. We assume that each label is represented as

a number in {0, 1}, where 0 is the “negative” label and 1 is the “positive” label. We use

the data {xi, yi}ni=1 to learn a function s : Rp → [0, 1] that assigns probability scores to its

inputs. The classification rule is

Cτ (x) =

{
1 s(x) > τ,

0 s(x) ≤ τ.

40

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html#sklearn.model_selection.StratifiedKFold
https://scikit-learn.org/stable/modules/cross_validation.html

There are four cases:

• If yi = Cτ (xi) = 1 then the sample (xi, yi) is a true positive (TP).

• If yi = Cτ (xi) = 0 then the sample (xi, yi) is a true negative (TN).

• If Cτ (xi) = 1 but yi = 0 then the sample (xi, yi) is a false positive (FP).

• If Cτ (xi) = 0 but yi = 1 then the sample (xi, yi) is a false negative (FN).

The ROC curve is a plot of the true positive rate (TPR) against the false positive

rate (FPR) as τ varies from 1 to 0. The true positive rate is how much the classifier gets

it right among the positive samples. It is defined as the size of the true positives divided by

the size of all positive samples, which consist of both true positives and false negatives:

TPR =
#True Positive Samples

#Positive Samples
=

|TP |
|TP |+ |FN |

.

The false positive rate is how much the classifier gets it wrong among the negative samples.

It is defined as the size of the false positives divided by the size of all negative samples, which

consist of both false positives and true negatives:

FPR =
#False Positive Samples

#Negative Samples
=

|FP |
|FP |+ |TN |

.

At τ = 1, we classify every sample as being negative (C1(x) ≡ 0). No positive sample is

correctly classified, so true positive rate is 0. Also in this situation we are able to correctly

predict the labels of all negative samples, so the false positive rate is also 0. Thus the curve

passes the point (0, 0) ∈ R2.

At τ = 0, we classify every sample as positive (C0(x) ≡ 1). In particular we classify every

positive sample as positive, so the true positive rate is 1. At the same time we get every

negative sample wrong, so the false positive rate is also 1. Thus the curve passes the point

(1, 1) ∈ R2.

In general, the closer the ROC curve is to the upper left corner, the better. If the ROC

curve passes point (0, 1) ∈ R2, as in Fig. 4a, it means that the classifier is able to achieve 0%

false positive rate and 100% true positive rate, which implies that the model does perfect

classification: it classifies every positive sample as positive and every negative sample as

negative. If, on the other hand, the ROC curve is like Fig. 4b, then the model classifies

every positive sample as negative and every negative sample as positive. But this is actually

not a bad thing: we just need to reverse the prediction for every sample and then we can

get perfect classification. If the ROC curve is close to the 45 degree line (Fig. 4c), then it

means that the model is not much better than random classification.

A natural metric for comparing ROC curve is the area under the ROC curve (AUC).

AUC = 1 corresponds to the perfect classification case, and AUC = 0 corresponds to the

41

(a) AUC = 1. (b) AUC = 0. (c) AUC = 0.5.

Figure 4: ROC curve for three extreme cases.

reversed classification case. The closer the AUC is to 1, the better. AUC score also has a

probabilistic interpretation: It is the probability that the classifier ranks a randomly chosen

positive sample higher than a randomly chosen negative sample. We can justify this assertion

as follows: let the random variable s(Xpos) ∈ [0, 1] denote the output score for a random

positive sample Xpos and let fpos denote its density function. Similarly let s(Xneg) ∈ [0, 1]

denote the output score for a random negative sample Xneg and let fneg denote its density.

The true positive rate as a function of the threshold τ is

T (τ) := P(s(Xpos) > τ) = E[I(s(Xpos) > τ)] =

∫ 1

τ

fpos.

Similarly the false positive rate is

F (τ) := P(s(Xneg) > τ) = E[I(s(Xneg) > τ)] =

∫ 1

τ

fneg.

We have

AUC =

∫ 0

1

T (τ)dF (τ) =

∫ 0

1

T (τ)d

(∫ 1

τ

fneg
)

=

∫ 1

0

T (τ)fneg(τ)dτ =

∫ 1

0

(∫ 1

τ

fpos
)
fneg(τ)dτ

=

∫ 1

0

E[I(s(Xpos) > τ)] · fneg(τ)dτ = E[I(s(Xpos) > s(Xneg))]

= P (s(Xpos) > s(Xneg)) .

42

References

Friedman, J. H. (2001). “Greedy Function Approximation: A Gradient Boosting Machine”.

The Annals of Statistics 29.5, pp. 1189–1232 (cit. on pp. 25, 32).

James, G. et al. (2014). An Introduction to Statistical Learning: with Applications in R.

Springer Texts in Statistics. Springer New York (cit. on p. 4).

Platt, J. (1998). “Sequential minimal optimization: A fast algorithm for training support

vector machines” (cit. on p. 35).

43

	The Bias-Variance Trade-off
	Linear Methods for Regression
	Linear Regression
	Online least squares

	Ridge Regression
	Lasso Regression

	Linear Methods for Classification
	Logistic Regression
	Estimation of Parameters
	More than two classes

	Generative Learning
	Gaussian Discriminant Analysis
	Naive Bayes

	Beyond Linearity
	Cubic Splines
	Natural Cubic Splines
	Smoothing Splines
	Local Regressions

	Decision Tree Learning
	Decision Trees
	Bagging
	Random Forests

	Gradient Boosting
	Motivations
	Boosting Schemes
	LS-Boost
	LAD-Boost
	AdaBoost

	Gradient Tree Boosting
	Comments

	Support Vector Machines
	Soft Margins
	The SMO Algorithm
	Kernels
	SVM for More than two classes

	Model Evaluation
	Cross-Validation
	ROC curve

