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1 Banach Spaces

1.1 Basic Definitions and Properties

Definition 1.1 (Normed Vector Space). A norm k � k W V ! R defined on a vector space V is a real-valued function
such that

(1) kvk � 0 for all v 2 V with kvk D 0 if and only if v D 0.

(2) k˛vk D j˛jkvk for any scalar ˛.

(3) kuC vk � kuk C kvk for all u; v 2 V .

A normed vector space is a pair .V; k � k/ where V is a vector space and k � k is a norm defined on V .

Sometimes when the norm is clear from the context we will simply say V is a normed vector space.

Definition 1.2 (Cauchy Sequence). A sequence fxig1iD1 in a normed vector space .X; k�k/ is called a Cauchy sequence
if for every real number � > 0 there is a positive integer N such that

kxm � xnk < �; 8m; n � N:

X is called complete if every Cauchy sequence in X converges.

Note that

� A convergent sequence is a Cauchy sequence. If xn ! x, then for every � > 0 there is N > 0 such that
kxn � xk < �=2 for all n � N . Hence by the triangle inequality for m; n � N

kxm � xnk � kxm � xk C kx � xnk <
�

2
C
�

2
D �:

The converse is not true in general. Take A D .0; 1� and the sequence f1=ng1nD1 for example. It converges to 0,
which does not belong to the set A.

� A Cauchy sequence must be bounded: there is an N � 1 such that kxm � xnk < 1 for all m; n � N . If we
take B D fxn W n � N g then diamB � 1 so that B is bounded. On the other hand the set of finite points
A D fx1; : : : ; xN g is bounded, so that fxng1nD1 D A [ B is bounded.

Definition 1.3. A Banach space is a complete normed vector space.

Proposition 1.4. A closed subspace of a Banach space is again a Banach space.

Proof. Let M be a closed subspace of a Banach space X , and let fxng �M � X be a Cauchy sequence in M . Since
X is complete, the sequence converges to a point x 2 X . Since M is closed, x 2M .

Let BŒa; b� be the space of all bounded real-valued functions on Œa; b�. Define a norm k � k1 on BŒa; b� by

kf k1 D sup
x2Œa;b�

jf .x/j: (1)

Then it is easy to see that k � k1 is a norm on BŒa; b�. It is called the supremum norm or uniform norm on BŒa; b�.
Recall that for a sequence of real-valued functions ffng1nD1 defined on Œa; b�, we say ffng1nD1 converges uniformly to
f if for every � > 0, there is N > 0 such that jfn.x/ � f .x/j < � for all n � N and all x 2 Œa; b�. It is easy to see
that ffng1nD1 converges uniformly to f if and only if limn!1 kfn�f k1 D 0, i.e. fn converges to f in BŒa; b� with
respect to the uniform norm. This justifies the name “uniform norm”. We next show that BŒa; b� equipped with the
uniform norm is a Banach space.
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Proposition 1.5. .BŒa; b�; k � k1/ is a Banach space.

Proof. We need to show that every Cauchy sequence in BŒa; b� converges with respect to k � k1. So let ffng1nD1
be a Cauchy sequence in BŒa; b�. This means that given � > 0, there is N > 0 such that kfn � fmk1 < � for all
n;m > N . Hence for all x 2 Œa; b�,

jfn.x/ � fm.x/j � kfn � fmk1 < �:

This implies that for each x 2 Œa; b�, the sequence ffn.x/g1nD1 is a Cauchy sequence in R. Since R is complete, the
sequence is convergent. Define

f .x/ WD lim
n!1

fn.x/

for each x 2 Œa; b�. We want to show that ffng1nD1 converges to f .
First of all, is f 2 BŒa; b� at all? The Cauchy sequence ffng1nD1 is bounded, so that there existsM > 0 for which

kfnk1 � M for all n 2 N. By the definition of the uniform norm, we have jfn.x/j � kfnk1 � M for all x 2 Œa; b�
and all x 2 N. Taking n!1 we find jf .x/j D limn!1 jfn.x/j �M , so that f is indeed bounded.

For any � > 0 and for each x 2 X , there is N > 0 so that for all n � N ,

jfn.x/ � f .x/j D lim
m!1

jfn.x/ � fm.x/j � �:

This implies that for all n � N , kfn � f k1 � �. This proves the convergence of the sequence ffng1nD1 to f .

Let C 0Œa; b� denote the space of continuous real-valued functions on Œa; b�. If we equip it with the uniform
norm Eq. (1), then thanks to Proposition 1.6, it is a closed subspace of BŒa; b�. Thus according to Proposition 1.4
.C 0Œa; b�; k � k1/ is a Banach space.

Proposition 1.6. Let ffng1nD1 be a sequence in C 0Œa; b�. If kfn � f k1 ! 0 as n ! 1 (i.e. ffng1nD1 converges to
f uniformly), then f is also continuous.

Proof. Fix � > 0 and x0 2 Œa; b�. To prove that f is continuous at x0, we need to find a ı > 0 such that jx � x0j <
ı ) jf .x/ � f .x0/j < �. The idea is to approximate jf .x/ � f .x0/j by the three segments in the triangle inequality
below:

jf .x/ � f .x0/j � jf .x/ � fn.x/j C jfn.x/ � fn.x
0/j C jfn.x

0/ � f .x0/j:

Each of the three terms on the right side can be made small:

� we can choose N > 0 such that jf .x/ � fn.x/j < �=3 and jfn.x0/ � f .x0/j < �=3 for all n � N , by uniform
convergence;

� by continuity of fn, we can find some ı > 0 such that jx � x0j < ı implies that jfn.x/ � fn.x0/j < �=3.

Then for this jx � x0j < ı we have
jf .x/ � f .x0/j <

�

3
C
�

3
C
�

3
D �:

This proves that f is indeed continuous.

Besides the supremum norm, we can also define other norms on C 0Œa; b�, in particular the p-norms, which are
generalizations of the p-norms defined on finite dimensional Euclidean space.

Proposition 1.7. k � k1 W C 0Œa; b�! R defined by

kf k1 D

Z b

a

jf .x/jdx

is a norm on C 0Œa; b�.
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Proof. We need to verify the three properties in Definition 1.1.

(1) We need to prove that for f 2 C 0Œa; b�,
R b
a
jf .x/jdx � 0 ) jf j � 0 on Œa; b� (so that f � 0 on Œa; b�).

Suppose to the contrary, jf .x0/j ¤ 0 for some x0 2 Œa; b�, say f .x0/ > 0. Then since f is continuous on Œa; b�,
f .x/ > 0 for all x sufficiently close to x0. To be rigorous choose 0 < � < f .x0/. By continuity there exists ı > 0

such that for all x 2 Œx0 � ı; x C ı� we have jf .x/ � f .x0/j < �, so that f .x/ > f .x0/ � � > 0. NowZ b

a

jf .x/jdx �

Z x0Cı

x0�ı

jf .x/jdx > 0;

a contradiction.

(2) Obvious.

(3) For the triangle inequality, since jf .x/C g.x/j � jf .x/j C jg.x/j, we haveZ b

a

jf .x/C g.x/jdx �

Z b

a

.jf .x/j C jg.x/j/dx D

Z b

a

jf .x/jdx C

Z b

a

jg.x/jdx:

For 1 � p <1, the p-norm k � kp on C 0Œa; b� is defined by

kf kp D

 Z b

a

jf .x/jpdx

!1=p
:

The triangle inequality for the p-norm
kf C gkp � kf kp C kgkp

is also called the Minkowski inequality. C 0Œa; b� equipped with the p-norm is not complete. Take p D 1 and C 0Œ0; 1�
for example, and consider the sequence of functions in Fig. 1a, i.e.

fn.x/ D

8̂̂<̂
:̂
0 if x 2 Œ0; 1=2�I

linear if x 2 Œ1=2; an�I

1 if x 2 Œan; 1�

with an D 1=2C 1=n. The distance between two elements fn and fm under the 1-norm is the area between them, as
shown in Fig. 1b. The area can be made arbitrarily small for large n or m, so ffng is a Cauchy sequence. However,
the sequence converges to the function

f .x/ D

(
0 if x 2 Œ0; 1=2�

1 if x 2 .1=2; 1�
;

which is not continuous and does not belong to C 0Œ0; 1�.

Definition 1.8. A linear map L W X ! Y between two Banach spaces is called bounded if there is a constant K > 0

such that
kLxk � Kkxk for all x 2 X:

Theorem 1.9. A linear map L W X ! Y between two Banach spaces is bounded if and only if it is continuous.
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0 1

1

1=2 an

1
m

fn

(a) The sequence ffng.

0 1

1

1=21=2

fn fm

(b) kfn � fmk1 can be made small.

Figure 1: An example showing C 0Œ0; 1� with 1-norm is not complete.

Proof. If L is bounded, then for xn ! x we have kLxn �Lxk D kL.xn � x/k � Kkxn � xk converges to 0, so that
it is continuous. If L is continuous, then in particular it is continuous at 0, and so for any sequence fxng1nD1 � X for
which xn ! 0 in X, we have Lxn ! 0 in Y . Suppose L is not bounded, then

kLxnk

kxnk
! 1

+



L xn

kxnk





 WD an !1
+



L xn

kxnk �
p
an





 D 



L xn

kxnk





ıpan D pan !1:
We arrived at a contradiction, since yn D xn=

�
kxnk �

p
an
�

tends to 0.

The space of linear continuous maps between X and Y is denoted by L.X; Y /. We can define a norm on it by
kLk WD supkxkD1 kLxk. The space L.X; Y / equipped with this norm is again a Banach space.

Not all linear maps are bounded. An example is the map L W `2 ! R1 with Lek D kek , where fekg is an
orthonormal basis in `2. We can imagine that it is an infinite matrix with 1; 2; 3; 4; : : : on the diagonal...

1.2 Banach Fixed Point Theorem

Definition 1.10 (Contraction). Let .X; k � k/ be a Banach space. A mapping T W X ! X is called a contraction on X
if there is ˛ 2 .0; 1/ such that

kT x � Tyk � ˛kx � yk

for all x; y 2 X .

Theorem 1.11 (Banach Fixed Point Theorem). Let T W X ! X be a contraction on a Banach space X . Then T has a
unique fixed point.

Proof. First, for a contraction T , its fixed point is necessarily unique. For suppose x D T x and x0 D T x0 are two
fixed points of T . Then

kx � x0k D kT x � T x0k � ˛kx � x0k:
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Since ˛ < 1, we have kx � x0k D 0 and consequently x D x0. Pick an arbitrary point x0 2 X and define a sequence
fxng by

x1 D T x0I

x2 D T x1 D T
2x0I

x3 D T x2 D T
3x0I

:::

xn D T xn�1 D T
nx0I

:::

From Definition 1.10, a contraction is continuous. If our fxng converges to some x 2 X , then from xn D T xn�1, we
have

x D lim
n!1

xn D lim
n!1

T xn�1 D T
�

lim
n!1

xn�1

�
D T x;

so that x 2 X will be a fixed point of T . Our next task is to show that fxng is Cauchy, so by completeness of X the
convergence is guaranteed, and from which the existence of fixed point will be established. Now,

kxmC1 � xmk D kT xm � T xm�1k

� ˛kxm � xm�1k

D ˛kT xm�1 � T xm�2k

� ˛2kxm�1 � xm�2k

:::

� ˛mkx1 � x0k:

Then by the triangle inequality, we have

kxm � xnk � kxm � xmC1k C kxmC1 � xmC2k C � � � C kxn�1 � xnk

� .˛m C ˛m�1 C � � � C ˛n�1/kx1 � x0k

D
˛m

1 � ˛
.1 � ˛n�m/kx1 � x0k

�
˛m

1 � ˛
kx1 � x0k ! 0 as m!1:

This proves fxng is Cauchy. Consequently, fxng converges to some x 2 X and this point is a fixed point of X .

1.2.1 Counter-examples of the Banach Fixed Point Theorem

Note the Banach fixed point theorem remains true if we restrict to T WM !M for some closed subset M of X .

(1) (M not closed) Consider M D .0; 1/ and f .x/ D x=2. In this case fixed point does not exist.

(2) (T not contraction) Consider T W Œ0; 1�! Œ0; 1� with T .x/ D x2. We have T .0/ D 0 and T .1/ D 1, so that in
this case the fixed point is not unique.

(3) (T not contraction) For T W R ! R, T admits a fixed point if the graph of T intersects with the line y D x.
Consider

T x D

8<:x C 1
xC1

if x � 0

1 if x � 0
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For x � 0 the graph asymptotically approaches the line y D x as x ! 1, but it never intersects with y D x.
The derivative of T is

T 0.x/ D

8<:1 � 1
.xC1/2

if x � 0

0 if x � 0

so jT 0.x/j < 1 for all x 2 R, but jT 0.x/j ! 1 as x !1. We have jT x � Tyj < jx � yj for any x; y 2 R, but
there does not exist a constant ˛ 2 .0; 1/ such that jT x �Tyj � ˛jx � yj for any x; y 2 R , since the derivative
tends to 1. We see that the condition “jT x � Tyj < jx � yj for any x; y 2 R” is not enough.

(4) (Contraction and stability) Consider the affine transformation T W R! R where T .x/ D ax C b. If a ¤ 1 then
we have a unique fixed point. However, the situation is different for a > 1 and a < 1. For a < 1, the fixed point
is stable: we can start with any point x0 on the real line and use the iterative procedure of the Banach fixed point
theorem to converge to the fixed point. For a > 1 the fixed point is unstable: apply the iterative procedure for
any starting point x0 not equal to the fixed point itself will lead us far away to infinity.

Another example is T .x/ D x2. If we start with jx0j > 1 then the sequence fxng (xn D T xn�1) will diverge to
infinity; if we start with jx0j D ˙1 then we will stay at the fixed point, but if we start with any jx0j < 1 then the
sequence fxng will converge to 0. We see that the fixed point x D 0 is stable, while the point x D 1 is unstable.
Indeed, if we take M D Œ�1=2C �; 1=2C �� then max jT 0.x/j D j1

2
� �j � 2 D 1 � 2� < 1, so T restricted to

M is a contraction.

More examples:

� xnC1 D
p
xn C 2,

� xnC1 D e
�x2

n ,

� xnC1 D 2 arctan xn,

� xnC1 D .1=2/ arctan xn,

� xnC1 D 2 log.1C xn/.

(5) For affine transformation T x D Ax C b, we want Ax C b D x) x D .I � A/�1b. We then want

det.I � A/ ¤ 0” � D 1 not an eigenvalue of A:

For T to be contraction we want max j�i j < 1 where �i s are eigenvalues of A, or kAk � 1 in general.

1.2.2 Application of the Banach Fixed Point Theorem

The standard application of the Banach fixed point theorem is Picard’s existence theorem.

Theorem 1.12 (Picard’s existence and uniqueness theorem). Let F.t; y/ be a continuous function of .t; y/ on a strip

S D f.t; y/ W a � t � b;�1 < y <1g

and suppose further it is Lipschitz continuous with respect to the second argument, i.e. there is a constant K > 0 such
that

jF.t; y1/ � F.t; y2/j � Kjy1 � y2j 8.t; y1/; .t; y2/ 2 S :

If .t0; y0/ is an interior point of S , then there exists a unique solution y.t/ of

y0 D F.t; y/; y.t0/ D y0; (2)

on some interval Œa0; b0� with t0 2 Œa0; b0� � Œa; b�.
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Proof. First note that y is a solution to Eq. (2) if and only if it is a solution to

y.t/ D y0 C

Z t

t0

F.u; y.u//du: (3)

Define the operator T as

.Ty/.t/ D y0 C

Z t

t0

F.u; y.u//du:

y is a solution to Eq. (3) iff Ty D y, i.e. y is a fixed point of T . Our aim is to choose an appropriate interval Œa0; b0�,
and prove that T W C 1Œa0; b0� ! C 1Œa0; b0� is a contraction (with1-norm), so that we can apply Banach fixed point
theorem to assert that there is a unique fixed point of T :

kTy1 � Ty2k D





Z t

t0

F.u; y1.u//du �

Z t

t0

F.u; y2.u//du






D

ˇ̌̌̌
ˇZ t�

t0

.F.u; y1.u// � F.u; y2.u/// du

ˇ̌̌̌
ˇ

�

Z t�

t0

jF.u; y1.u// � F.u; y2.u//j du

�

Z t�

t0

K jy1.u/ � y2.u/j du

�

Z t�

t0

K ky1 � y2k du

D .t� � t0/K � ky1 � y2k

where t� D arg maxt2Œa;b� j.Ty1/.t/ � .Ty2/.t/j. To make T a contraction ,we want

.t� � t0/K < 1;

i.e. t� < t0 C 1=K. So if we choose some 0 < ı < 1=K and let a0 D t0 � ı; b0 D t0 C ı we are done.

1.3 Compact Operators

Definition 1.13. A set A � X is relatively compact if its closure in X is compact.

Definition 1.14. A linear operator L W X ! Y is called compact if one of the following equivalent statements holds:

˘ the image of the unit ball of X under T is relatively compact in Y;

˘ the image of any bounded subset of X under T is relatively compact in Y ;

˘ there exists a neighborhood U of 0 in X and a compact subset V � Y such that T .U / � V ;

˘ for any bounded sequence .xn/n2N in X , the sequence .T xn/n2N contains a converging subsequence.

An example of compact operator is T W C 0Œa; b�! C 0Œa; b� with

.Ty/.t/ D

Z t

a

f .u; y.u//du:
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1.4 Schauder’s Fixed Point Theorem

Schauder’s fixed point theorem is the infinite dimensional version of the Brouwer fixed point theorem:

Theorem 1.15 (Schauder’s Fixed Point Theorem). Every continuous function T W K ! K from a nonempty, compact
and convex subset K of a Banach space X to itself has a fixed point.1

Proof. The idea of the proof is to approximate T W K ! K by some finite dimensional maps Tn W Kn ! Kn and
make use of the Brouwer’s fixed point theorem (Theorem 1.16).

Since K is compact, for every � > 0 there are N points fx1; : : : ; xN g � K such that K �
SN
iD1 B.xi ; �/.

Let conv.fx1; : : : ; xN g/ denote the convex hull of fx1; : : : ; xN g. Since it is formed by finite number of points, it is
homeomorphic to some compact and convex subset in some finite Euclidean space. We can then define a projection
PN W K ! conv.fx1; : : : ; xN g/ such that kPN .x/ � xk < � for any x 2 K. For example, we can take a partition of
unity f igNiD1 of K subordinate to fB.xi ; �/g

N
iD1 and define PN as

PN .x/ D
 1.x/

 .x/
x1 C

 2.x/

 .x/
x2 C � � � C

 N .x/

 .x/
xN

where  D
PN
iD1  i . Indeed,

kPN .x/ � xk D






 NX
iD1

 i .x/

 .x/
xi �

NX
iD1

 i .x/

 .x/
x







D






 NX
iD1

 i .x/

 .x/
.xi � x/







�

NX
iD1

 i .x/

 .x/
kxi � xk

<

NX
iD1

 i .x/

 .x/
� D �

where in the last inequality we used the fact that  i .x/ D 0 for x … B.xi ; �/. Now we are able to define TN W
conv.fx1; : : : ; xN g/ ! conv.fx1; : : : ; xN g/ as TN WD PN ı T jconv.fx1;:::;xN g/

. By Theorem 1.16 the function has a
fixed point x�N .

Let fx�Nk
g be a sequence of fixed points inK defined above. By compactness ofK it has a convergent subsequence.

Let us denote this subsequence by fx�mg and its limit by x�, i.e. limm!1 x
�
m D x

�.
We would like to argue that the sequence fx�mg also converges to T .x�/, i.e. limm!1 x

�
m D T .x�/. Then since

the Banach space X is Hausdorff we would have T .x�/ D x�. To see this, we use the triangle inequality

kx�m � T .x
�/k � kx�m � T .x

�
m/k C kT .x

�
m/ � T .x

�/k:

The first term on the right hand side goes to zero as m ! 1 since x�m D Tm.x
�
m/ D Pm ı T .x

�
m/ and we have

kPm ı T .x
�
m/ � T .x

�
m/k < � ! 0 by construction of Pm. The second term goes to zero as x�m ! x� since T is

continuous.

Theorem 1.16 (Brouwer’s fixed point theorem). On any nonempty compact and convex subset K � Rn, every
continuous function f W K ! K has a fixed point.

1Another statement is that if T W K ! K is a compact operator whereK is nonempty, convex and closed, then T has a fixed point.
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r.x/

f .x/

x

Figure 2: Construction of retraction in the proof of Brouwer’s fixed point theorem.

Proof. We prove the theorem for K D Dn, the closed unit ball, since every nonempty compact and convex subset in
Rn is homeomorphic to Dm for some suitable dimension m � n. We discuss the proof for n D 1, n D 2, and n > 2

separately below.
n D 1 In this case let’s take K D Œ0; 1�. The proof is simple: if for f W Œ0; 1� ! Œ0; 1� we have f .0/ D 0 or

f .1/ D 1, then we are done. Otherwise, if f .0/ ¤ 0 and f .1/ ¤ 1 then we must have f .0/ > 0 and f .1/ < 1. Then
for the function g.x/ D f .x/ � x defined on Œ0; 1� we have g.0/ > 0 and g.1/ < 0, so by the intermediate value
theorem in calculus there must be some point x� 2 Œ0; 1� such that g.x�/ D 0, i.e. f .x�/ D x�.

n D 2 Suppose f W D2 ! D2 does not have a fixed point. Then for every x 2 D2 we have f .x/ ¤ x, so we
for every x 2 D2 we can draw a ray starting at f .x/ and passing through x. Call the intersection of the ray with the
boundary r.x/ (See Fig. 2 for illustration). We constructed a function r W D2 ! S1 that is a retraction of D2 to S1:

� r.x/ D x for x 2 S1, i.e. r restricted to S1 � D2 is the constant map;

� r is continuous: a small perturbation in x would result in a small perturbation in f .x/ and consequently r.x/.

This implies that r ı � D 1 on S1, where � W S1 ! D2 is the inclusion map. The induced homomorphisms between
fundamental groups of S1 and D2 would have the relation .r ı �/� D r��� D 1�:

�1.S
1/

r�
�! �1.D

2/
��
�! �1.S

1/

which is impossible, since �1.S1/ ' Z but �1.D2/ is trivial.
The fundamental group of a space is the group of equivalent classes of loops in the space, where two loops are

equivalent if they are homotopic. It records information about “holes” in the space. Since D2 is convex, you can
continuously shrink every loop in D2 to a point on the loop, but you cannot do so for a loop in S1 without tearing
apart the loop. So in S1 a loop around the circle and a point on the circle is not (homotopic) equivalent.

n > 2 To prove for the general case, we go from homotopy to homology. If f has no fixed point, then we can
construct a retraction r W Dn ! Sn�1 as before. We would then have .r ı �/� D r��� D 1� for

Hn�1.S
n�1/

r�
�! Hn�1.D

n/
��
�! Hn�1.S

n�1/

which is again impossible since Hn�1.Sn�1/ ' Z while Hn�1.Dn/ is trivial.

Schauder’s fixed point theorem can be used to prove the Peano’s existence theorem:

Theorem 1.17 (Peano’s existence theorem). Let F.t; y/ be a continuous function of .t; y/ on a rectangle

R D f.t; y/ W a � t � b; c � y � dg:

11



If .t0; y0/ is an interior point of R, then there exists a solution y.t/ of

y0 D F.t; y/; y.t0/ D y0;

on some interval Œa0; b0� with t0 2 Œa0; b0� � Œa; b�.
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2 Hilbert Spaces

2.1 Basic Definitions and Properties

Definition 2.1. A Hilbert space is an inner product space .H; h�; �i/ that is also complete w.r.t. the norm induced by
the inner product. The induced norm is kxk D hx; xi1=2.

Proposition 2.2 (Cauchy-Schwarz inequality). LetH be a Hilbert space. For any u; v 2 H , we have hu; vi � kukkvk.

Proof. For t 2 R, we have huC tv; uC tvi � 0 (positivity). Expand this out we have t2kvk2C 2thu; vi C kuk2 � 0
for any t 2 R. This is a quadratic function in t that is always larger than or equal to 0. Thus the discriminant is
non-positive:

� D 4hu; vi2 � 4kuk2kvk2 � 0 ) hu; vi � kukkvk:

A useful property of the Hilbert space that is relevant for optimization is the following:

Proposition 2.3. Let K � H be a nonempty closed and convex subset of H . Then for every x 2 H there exists
y� 2 K such that

kx � y�k D min
z2K
kx � zk:

Moreover, we have hx � y�; z � y�i � 0 for every z 2 K.

What are examples of infinite dimensional Hilbert spaces? R1 is not. `1 D fa 2 R1 W kak1 <1g is a Banach
space but not a Hilbert space, but `p D fa 2 R1 W kakp <1g is also not a Hilbert space, since although there is the
p-norm in it, we cannot define an inner product that can induce the p-norm (note that when p < q we have `p � `q).
We only have a Hilbert space when p D 2, i.e.

`2 D

(
a 2 R1 W

1X
iD1

jai j
2 <1

)
:

The inner product is defined, since if a; b 2 `2, then

jha; bij D

ˇ̌̌̌
ˇX
i

aibi

ˇ̌̌̌
ˇ �X

i

jaibi j

�

X
i

�
a2i
2
C
b2i
2

�
D

X
i

a2i
2
C

X
i

b2i
2

D .kak2 C kbk2/=2

<1:

Another example of Hilbert space would be L2Œa; b�, i.e. square integrable functions defined on a closed interval,
or more generally any reasonable subset � of Rn. Are there other infinite dimensional Hilbert spaces? In fact, in
some sense there isn’t: every (infinite dimensional) separable Hilbert space is isomorphic to `2. Recall that a space is
separable if it contains a countable dense subset. In reality most Hilbert spaces we encountered are separable, and we
may never have to deal with in-separable spaces. The proof is straightforward once we have the following theorem:

Theorem 2.4. A Hilbert space H is separable if and only if it has a countable orthonormal basis (in the sense of a
Schauder basis, i.e. there is fxng1nD1 such that every x 2 H can be represented uniquely as x D

P1
nD1 anxn in the

sense of the induced metric)
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Proof. If H is separable, then we would like to have any orthonormal basis feigi2I to be countable. Assume the
contrary that feigi2I is uncountable. Note that each element in feigi2I is of distance

p
2 apart, like in the Euclidean

case: kei � ej k2 D keik2 C kej k2 D 2. Thus we can have a small open ball round each point in feigi2I . Those balls
are disjoint, and we see that it is no longer possible for a dense set to be countable.

On the other hand, if H has a countable orthonormal basis feig1iD1, then let

An D fq1e1 C � � � C qnen W qi 2 Q for i D 1; : : : ; ng

and let A D
S1
nD1An. Then A is the countable dense subset. We can prove that every open ball around any point

x 2 H contains an element from A by the triangular inequality.

Then from Theorem 2.4 it is not hard to show that every (infinite dimensional) separable Hilbert space H is
isomorphic to `2: pick a countable orthonormal basis ffng1nD1 and define T W H ! `2 by

T .f / D .hf; fni/
1

nD1 :

One can show that T is indeed an (isometric) isomorphism. So for example L2Œa; b� is isomorphic to `2.2 The idea is
that we can represent any function f in L2Œa; b� by countably many functions.

For example, f1=
p
2; cos x; sin x; cos 2x; sin 2x; : : :g is an orthonormal basis for L2.��; �/ with inner product

hf; gi D .1=�/
R �
��
fg. For any u 2 L2.��; �/ we have

u.x/ D
a0

2
C

1X
nD1

.an cosnx C bn sinnx/ (4)

and

kuk2 D
1

�

Z �

��

u2 D
a20
2
C

1X
nD1

�
a2n C b

2
n

�
:

This is the Parseval’s identity, which is just the infinite dimensional Pythagorean theorem. Several remarks:

(1) Odd functions are orthogonal to even functions (if u is odd and v is even, then uv is odd, so that
R
uv D 0.) If

u is odd then an D 0 for any n � 1, and if u is even then bn D 0 for n � 1. In general,

u.x/ D
u.x/C u.�x/

2
C
u.x/ � u.�x/

2

where the first term is even and the second term is odd.

(2) For the Heaviside function H.x/, since it is odd we have an D 0 and

bn D
2

�

Z �

0

sinnxdx D
2

�

�
�

cos.nx/
n

��
0

D
2

�

�
2

1
;
0

2
;
2

3
;
0

4
;
2

5
;
0

6
;
2

7
; � � �

�
so that

H.x/ D
4

�

�
sin x
1
C

sin 3x
3
C

sin 5x
5
C

sin 7x
7
C � � �

�
:

At x D �=2 we have

1 D
4

�

�
1

1
�
1

3
C
1

5
�
1

7
C � � �

�
so that � D 4

�
1

1
�
1

3
C
1

5
�
1

7
C � � �

�
:

2The statement L2Œa; b� is a separable Hilbert space is a very strong one and the proof is very involved.
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(3) If u is continuous and u0 is bounded, then Eq. (4) holds point-wise.

(4) For the function u.x/ D jxj, we have bn D 0 and a0 D �=2 and

an D
1

�

Z �

��

jxj cosnxdx D
2

�

Z �

0

x cosnxdx D
2

�n2
Œ.�1/n � 1�

So

u.x/ D
�

2
�
4

�

1X
kD0

cos.2k C 1/x
.2k C 1/2

:

In particular setting x D � (or x D 0) we get

1X
kD0

1

.2k C 1/2
D
�2

8
:

(5) Parseval’s identity:
1

�

Z �

��

x2dx D
�2

2
C

1X
kD0

16

�2.2k C 1/4

and we get
1X
kD0

1

.2k C 1/4
D
�4

96
:

(6) Next we take u.x/ D x, for x 2 .��; �/. Since we require u.x/ to be 2�-periodic we remove the end points
x D � and x D �� . It is odd so that an D 0 and

bn D
2

�

Z �

0

x sinnxdx D
2

n
.�1/nC1:

We obtain

u.x/ D 2

1X
nD1

.�1/nC1

n
sinnx:

Parseval’s identity yields:
1

�

Z �

��

x2dx D

1X
nD1

4

n2
H)

1X
nD1

1

n2
D
�2

6
:

(7) Note that if we differentiate u in Eq. (4) we get worse function. Regularity of u is about fast decay of an and bn.

2.2 Riesz Representation Theorem

The Riesz representation theorem implies that H and H� are actually isomorphic.

Theorem 2.5 (Riesz Representation Theorem). Let .H; h�; �i/ be a Hilbert space. Every element ' W H ! R in the
dual space H� of H can be represented as '.x/ D hx; yi for some y 2 H . Moreover k'k D kyk.

Proof. Suppose ' ¤ 0 and let M D ker' ¤ H and M? ¤ f0g. Take any w 2M?; w ¤ 0 and let

y D
'.w/

kwk

w

kwk
2M?:

The norm of y is kyk D j'.w/j=kwk, and '.y/ D '.w/2=kwk2, so '.y/ D kyk2 D hy; yi. For any x 2 H let

x0 D x �
'.x/

kyk

y

kyk
:
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Then
'.x0/ D '.x/ �

'.x/

kyk2
'.y/ D 0:

This implies that x0 2 ker' DM . Then

0 D hx0; yi D hx; yi �
'.x/

kyk2
hy; yi

+

'.x/ D hx; yi:

We also have
k'k D sup

kxkD1

'.x/ D sup
kxkD1

hx; yi � sup
kxkD1

kxkkyk D kyk:

On the other hand we can choose x D y=kyk and we have

k'k � '

�
y

kyk

�
D
'.y/

kyk
D kyk:

This proved k'k D kyk. To prove uniqueness, suppose '.x/ D hx; y1i D hx; y2i. Then we would have hx; y1�y2i D
0 for any x 2 H . This implies y1 � y2 D 0 and consequently y1 D y2.

2.3 Topology of infinite dimensional Hilbert space

OK, now we know that every infinite dimensional separable Hilbert space is like `2. Let’s investigate the natural
topology (i.e. the topology induced by the norm) on `2. Is the closed unit ball NB D fa 2 `2 W kak2 � 1g compact?
We can easily see that for the sequence ffng � NB where fn D .0; : : : ; 1; : : : ; 0; : : :/ we have kfnk D 1 for every
n 2 N, so it does not have any convergent subsequence in this strong topology, so the closed and bounded unit ball is
not compact. The sequence has a 1 in it that escapes to infinity. Not good! The topology is too “fine” in this infinite
dimensional space.

From another perspective, for any g 2 `2, we have

lim
n!1

Z
fng D lim

n!1
g.n/ D 0 D

Z
0 � g

but it is not true that fn ! 0, since kfnk D 1 8n 2 N. In other words, from the Reisz representation theorem
'.fn/ ! '.f / for every ' 2 H� but it is not true that fn ! f . We would like fn ! f to be true in some sense,
so that we are able to say fn ! f H) '.fn/ ! '.f /, i.e. ' remains continuous. Recall we define this to be the
weak topology, i.e. the weak topology on H is the topology generated by the linear functionals in H�, so that it is the
coarsest topology with respect to which all ' 2 H� remain continuous. Then we can use the Banach-Alaoglu theorem
to establish that the closed unit ball is indeed compact in the weak topology. In fact, this is true if and only if the space
is reflexive (Hilbert space is reflexive. To prove use the Riesz representation theorem twice).
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x

y

a b

Figure 3: Dido’s problem

3 Calculus of Variations

In finite dimensional optimization, our problem is minx2A f .x/ for some A � Rn. Here we are interested in

min
v2A

J.v/

where A is some subset of an infinite dimensional vector space V and J is some cost functional.

3.1 Examples in Calculus of Variations

We discuss three historical examples that motivated calculus of variations.

Example 3.1 (Dido’s isoperimetric problem). We are given a curve of a fixed length, and two fixed points a and b.
Our task is to choose the shape of the curve in order to maximize the area under the curve. See Fig. 3 for illustration.
Formally, the problem is to maximize

J.y/ D

Z b

a

y.x/dx

for y W Œa; b�! R continuous and y.a/ D y.b/ D 0, subject to the constraint thatZ b

a

p
1C .y0.x//2dx D C0

for some fixed constant C0.
The solution is easily guessed to be an arc of a circle. However, a rigorous demonstration requires tools from

calculus of variations.

Example 3.2 (Catenary problem). We would like to determine the shape of the rope that hangs over two points of equal
height. See Fig. 4. The shape should minimize the total potential energy of the rope. If our rope has uniform density �,
then the mass of a length ds is dm D �ds, and the potential energy of that segment is dU D dm � g � y D .�g/y � ds.
The total potential energy of the curve is thus

J.y/ D

Z b

a

dU D .�g/

Z b

a

yds D .�g/

Z b

a

y.x/
p
1C .y0.x//2dx:

We would like to minimize J.y/ among continuous functions y W Œa; b�! RC subject to the constraint thatZ b

a

p
1C .y0.x//2dx D C0

as before.
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x

y

a b

Figure 4: Catenary problem

The solution of the problem turns out to be

y.x/ D c cosh.x=c/ for some c > 0;

instead of a parabola. The curve describes many things we see in real life, like freely-hanging electric power cables,
spider’s webs, or simple suspension bridges.

Example 3.3 (Brachistochrone). Given two fixed points in the vertical plane, we want to find a path between them
so that a particle sliding without friction along this path takes the shortest time (see Fig. 5). Note that we take the
y-direction downward, so the negative direction of y corresponds to increase of potential energy. Suppose the particle
is initially at rest so that the total energy is zero. By conservation of mechanical energy we have

1

2
mv2 �mgy D 0;

so the speed is v D
p
2gy. Time is distance divided by speed, so the traveling time of an arc ds is ds=v. The total

traveling time is

J.y/ D

Z b

a

ds

v
D

Z b

a

p
1C .y0.x//2p
2g � y.x/

dx:

We look for a continuous function y W Œa; b� ! RC with two fixed end points that minimizes J . The optimal curves
turn out to be cycloids.

All examples take the following form: Among all continuous functions y W Œa; b� ! R from C 1Œa; b� satisfying
given boundary conditions

y.a/ D y0; y.b/ D y1

x

y

a b

Figure 5: Brachistochrone problem
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find (local) minima of the cost functional

J.y/ D

Z b

a

L.x; y.x/; y0.x//dx: (5)

L W R�R�R! R is called the Lagrangian. To minimize J.y/, we’d like to have its “derivative” to be zero. We next
define the corresponding notion of derivatives.

3.2 Definition of Variations

The Fréchet derivative generalizes the notion of derivatives in one dimensional case.

Definition 3.4 (Fréchet derivative). Let T W X1 ! X2 be a function between two Banach spaces. We say it is Fréchet
differentiable at x0 2 X1 if there exists a continuous linear map A W X1 ! X2 such that

T .x0 C �/ D T .x0/C A�C o.k�k/

for all � 2 X1. L is called the Fréchet derivative of T .

If for any x 2M � X , T is Fréchet-differentiable and moreover T 0 is continuous, then we say T 2 C 1.M/.

Example 3.5. We discussed the following examples in class:

(1) T W C 0Œa; b�! R with

T .y/ D

Z b

a

.sin3.t/C y2.t//dt:

T is convex as the function s 7! s2 is convex.

(2) T W C 1Œa; b�! R with

T .y/ D

Z b

a

�.t/
p
1C y0.t/2dt

where � 2 C 0Œa; b�. The function s 7!
p
1C s2 is convex. T is convex if � > 0 and T is concave if � < 0.

However, it is not possible for T to be strictly convex, since for example T .y/ D T .y C 1/.

(3) T W C 0Œ0; 1�! R with T .y/ D y.0/. T is linear so it is convex.

(4) T W C 0Œ0; 1� ! R with T .y/ D y.0/2 � y.1/. T is convex. The derivative of T is T 0.y/h D 2y.0/h.0/ �

y.1/h.0/.

(5) (Linear) T W C 1Œa; b�! R with

T .y/ D y0
�
aC b

2

�
:

(6) (Linear) T W C 0Œa; b�! R with

T .y/ D

Z b

a

t2y.t/dt:

(7) T WM ! R with M D fy 2 C 1Œ0; 1� W y.0/ D 0 and y.1/ D 1g and

T .y/ D

Z 1

0

y0.t/2dt:

M is a closed and convex subset of the Banach spaceC 1Œ0; 1�. T is continuous and convex and T .y/ � 0 for any
y 2 M . Suppose y� is a minimizer. Then T .y�/ � T .y� C h/ for any h 2 C 1Œ0; 1� such that h.0/ D .1/ D 0.
We have

T .y� C h/ � T .y�/ D

Z 1

0

Œ2.y�/0.t/h0.t/C h0.t/2�dt:
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Let’s guess y�.t/ D t . Then T .y�C h/� T .y�/ D
R 1
0
h0.t/2dt � 0. It is strictly positive unless h D 0. So we

have a unique minimizer.

Definition 3.6 (First variation). The Fréchet derivative for the cost functional J W V ! R at point y 2 V is called the
first variation of J and is denoted by ıJ jy . Namely, it is a linear functional such that

J.y C �/ D J.y/C ıJ jy .�/C o.k�k/: (6)

We should be aware of another definition of first variation, namely thr Gateaux derivative

J.y C ˛�/ D J.y/C ıJ jy .�/˛ C o.˛/: (7)

Equivalently, it is also

ıJ jy .�/ D lim
˛!0

J.y C ˛�/ � J.y/

˛
D

d

d˛

ˇ̌̌̌
˛D0

J.y C ˛�/: (8)

It is a weaker notion than the Fréchet derivative, but is also easier to work with. In the following we will often work
with this weaker notion.

A real-valued functional B W V � V ! R is bilinear if it is linear in each argument. Setting Q.y/ D B.y; y/ we
get a quadratic form on V .

Definition 3.7 (Second Variation). A quadratic form ı2J
ˇ̌
y
W V ! R is called the second variation of J at y if for all

� 2 V and all ˛ we have

J.y C ˛�/ D J.y/C ıJ jy .�/˛ C ı2J
ˇ̌
y
.�/˛2 C o.˛2/: (9)

3.3 Euler-Lagrange Equation

Similar to the first-order necessary condition in finite dimensional optimization, if y� is optimal we’d like to have

ıJ jy� .�/ D 0 (10)

for all admissible perturbations � (i.e.�.a/ D �.b/ D 0). We expand the Lagrangian inside J.y C ˛�/ in the left side
of Eq. (7) using Taylor expansion (f .xC v/ D f .x/C rf � vC o.v/) and then equate the corresponding term with
ıJ jy .�/ � 0:

J.y C ˛�/ D

Z b

a

L.x; y C ˛�; y0 C ˛�0/

D

Z b

a

�
L.x; y; y0/C Ly.x; y; y

0/˛�C Ly0.x; y; y
0/˛�0 C o.˛/

�
so we have Z b

a

�
Ly.x; y; y

0/�C Ly0.x; y; y
0/�0

�
D ıJ jy .�/ � 0: (11)

Applying integration by parts for the second term inside the integral we getZ b

a

�
Ly.x; y; y

0/ �
d

dx
Ly0.x; y; y

0/

�
� D 0 (12)

for all � 2 C 1Œa; b� such that �.a/ D �.b/ D 0. Since we required the term inside the bracket to be continuous, it
must be zero on Œa; b�. We get the renowned Euler-Lagrange equation:

Ly D
d

dx
Ly0 (13)
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Example 3.8. This example demonstrates that we can use the Euler-Lagrange equation to solve seemingly complicated
problems. Consider

minJ.y/ D
Z log2

0

e.�x�2yC2y
0/dx

with y.0/ D 2 and y.log 2/ D 1. Apply the Euler-Lagrange equation we get Ly D �2L and .d=dx/Ly0 D
2.�1 � 2y0 C 2y00/L, so y00 � y0 D 0. The solution is y.x/ D �ex C 3.

Example 3.9. This example demonstrates that the solution to the Euler-Lagrange equation is not necessarily optimal.
Consider

minJ.y/ D
Z 1

�1

.y0/2.1 � y0/2dx D

Z 1

�1

.y0 � y02/2dx

and let the function space be M D fy 2 C 1Œ�1; 1� W y.�1/ D 0; y.1/ D 1g. The derivative of L with respect to y0 is
Ly0 D 2.y0 � y02/.1 � 2y0/ D 2.y0 � 3y02 C 2y03/. Since there is no y in L, we have .d=dx/Ly0 D 0 and so Ly0
must be a constant. Consequently y0 must be a constant, so y is linear. The solution then is y.x/ D .x C 1/=2 and
J.y/ D

R 1
�1

1
4
�
1
4
dx D 1

8
.

Consider the following sequence

yn.x/ D

8̂̂<̂
:̂
0 �1 � x � � 1

n
;

n
4
.x C 1

n
/2 �

1
n
� x � 1

n
;

x 1
n
� x � 1:

The value of the functional is

J.yn/ D

Z 1
n

� 1
n

�
n

2

�
x C

1

n

��2 �
1 �

n

2

�
x C

1

n

��2
dx

D
1

16

Z 1
n

� 1
n

.nx C 1/2.1 � nx/2dx D
1

16

Z 1
n

� 1
n

.1 � n2x2/2dx

D
1

16

Z 1
n

� 1
n

.n4x4 � 2n2x2 C 1/dx

D � � � D
c

n

for some constant c. Hence J.yn/! 0 as n!1. The sequence converges to

y.x/ D

8<:0 �1 � x � 0

x 0 � x � 1
;

which does not belong to C 1Œ�1; 1�. In fact, for any “stair” function y we all have J.y/ D 0. Note also that the
Lagrangian L.s/ D s2.1 � s2/ is not convex.

Example 3.10. Consider

minJ.y/ D
Z 1

0

�
y02

p
C 2q � y � y0 C q0 � y2

�
dx

with y.0/ D 0 and y.1/ D 1, where p; q 2 C 1Œ0; 1� with p.x/ ¤ 0 on Œ0; 1�. The partial derivatives of the Lagrangian
with respect to y0 and y are respectively

Ly0 D
2y0

p
C 2q � y;

Ly D 2q � y
0
C 2q0 � y D

d

dx
.2qy/:
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So we have

d

dx

�
2y0

p
C 2q � y � 2q � y

�
D 0

y0 D C � p for some constant C 2 R

y.x/ D C

Z x

0

p.t/dt:

From y.1/ D 1 we obtain C D
R 1
0
p.t/dt .

3.3.1 Special Cases

1. (no y) L D L.x; y0/. In this case Ly0.x; y0/ D c. We can then infer y0 and consequently y.

2. (no x) L D L.y; y0/. Then
d

dx
Ly0.y; y

0/ � Ly.y; y
0/ D 0

+

y0
�
d

dx
Ly0.y; y

0/ � Ly.y; y
0/

�
D 0

+

y0
d

dx
Ly0.y; y

0/C y00Ly0.y; y
0/ � y00Ly0.y; y

0/ � y0Ly.y; y
0/ D 0

+

d

dx

�
y0Ly0.y; y

0/ � L.y; y0/

�
D 0

+

y0Ly0.y; y
0/ � L.y; y0/ D c:

For the Lagrangian in Example 3.3, this leads to

y0 � y0p
1C .y0/2

p
2gy
�

p
1C .y0/2
p
2gy

D c

+

�1p
1C .y0/2

p
2gy
D c

+

.1C .y0/2/.2gy/ D k > 0

�
k D

1

c2

�
.y0/2 D

k

2gy
� 1

+

y0 D

s
k

2gy
� 1;

a first order differential equation in y.
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3. (no y0) L D L.x; y/. Ly.x; y/ D 0. This is not a differential equation of y. We cannot use the Euler-Lagrange
equation in this case. For example

J.y/ D

Z 1

0

x2y2dx

on M D fy 2 C 1Œ0; 1� W y.0/ D 0; y.1/ D 1g. The Euler-Lagrange equation gives y D 0, which is not in M .
If we take yn.x/ D xn then we will have J.yn/! 0. The minimum is not attainable. As another example, take
same M and

J.y/ D

Z 1

0

.y2 � 2x � y/dx:

The Euler-Lagrange equation gives 2y � 2x D 0) y D x and we have J.y/ D �1=3. Note that J is convex
in y, so y is the unique minimizer.

Example 3.11. Below is a collection of exercises we did in class.

(1) Consider the cost functional J.y/ D
R b
a

siny0.x/dx, with endpoints y.a/ D y.b/ D 0. The Lagrangian only
depends on y0, so the Euler-Lagrange equation yields

d

dx
Ly0 D

d

dx
cosy0 D 0) cosy0 is constant ) y0 is constant.

Since y.a/ D y.b/ D 0, the solution is y D 0. However, as J is odd with J.0/ D 0, the solution y D 0 is not
optimal. Namely, if we take any y such that J.y/ > 0, then J.�y/ D �J.y/ < 0.

(2) Consider the cost functional

J.y/ D

Z 2

a

x3y0.x/3dx

where a � 0. J is not bounded from below, as can be seen from Fig. 6. Since x3 � 0 on Œa; 2� is increasing we
have ˇ̌̌̌

ˇZ .aC2/=2

a

x3y03dx

ˇ̌̌̌
ˇ <

ˇ̌̌̌Z 2

.aC2/=2

x3y03dx

ˇ̌̌̌
so that J.y/ < 0. As we increase the height of the function the functional J goes to �1. However, let’s still
solve the Euler-Lagrange equation and see what we will get:

d

dx

�
3x3y02

�
D 0) x3y0 D c ) y02 D

c

x3
) y0 D ˙

r
c

x3
D ˙

k

x3=2
:

We considered three cases:

(i) a D 0, y.0/ D 0; y.2/ D 1. In this case we really do not have a solution for y, since y.0/ and y0.0/ are
not defined. That the solution is not defined on some points is not obvious at first from the look of the
functional. If it were the case that y.2/ D 0, then we could set k D 0 and the solution would be y D 0.

(ii) a D 1, y.1/ D y.2/ D 1. Since J is odd, let’s first take y0 D k=x3=2. Integrate and we get

y.x/ D
h
p
x
C b)

8<:1 D y.1/ D hC b1 D y.2/ D hp
2
C b

)

8<:h D 0b D 1
) y D 1

for which J.y/ D 0.
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x

y

a 2

Figure 6: J.y/ is not bounded from below

(iii) a D 1, y.1/ D 1, y.2/ D 2. In this case the solution is

y.x/ D
h
p
x
C b)

8<:1 D y.1/ D hC b2 D y.2/ D hp
2
C b

)

8<:h D �
p
2.1C

p
2/

b D 3C
p
2

) y D
�
p
2.1C

p
2/

p
x

C 3C
p
2:

(3) The functional is

J.y/ D

Z 2

1

x3y0.x/2dx

with y.1/ D 5 and y.2/ D 2. Now J is convex, so the Euler-Lagrange equation would yield a unique optimal
solution. Let’s solve it:

d

dx
2x3y0.x/ D 0 ) y0.x/ D

c

x3
) y.x/ D k1x

�2
C k2

and from the boundary condition8<:y.1/ D k1 C k2 D 5y.2/ D k1=4C k2 D 2
) k1 D 4; k2 D 1 ) y.x/ D 4x�2 C 1:

(4) The functional is

J.y/ D

Z 1

0

.2xy � y02 C 3y0y2/dx

with y.0/ D 0; y.1/ D �1. Ly0 D �2y0 C 3y2 so .d=dx/Ly0 D �2y00 C 6yy0, and Ly D 2x C 6yy0, so

d

dx
Ly0 D Ly ) y00 D �x

and consequently y0 D �.1=2/x2 C k and y D �.1=6/x3 C k1x C k2. From the boundary condition y.0/ D
k2 D 0 and y.1/ D �1=6C k1 D �1) k1 D �5=6 so the solution is

y D �
1

6
x3 �

5

6
x:

(5) The functional is

J.y/ D

Z 1

0

.y3 C 3x2y0/dx:

We discussed two cases
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(i) y.0/ D 0; y.1/ D 1,

(ii) y.0/ D 0 and y.1/ is free.

If we now solve for the Euler-Lagrange equation, then we have Ly0 D 3x2 and Ly D 3y2, which gives us
y2 D 2x ) y D

p
2x. This solution can not satisfy the boundary condition of Item (i). It is only feasible

under Item (ii). What’s going wrong? Notice that we can do integration by parts on the second part of J to get
rid of y0, so in this sense J does not really depend on y0:Z 1

0

3x2y0dx D

Z 1

0

3x2dy D y � 3x2
ˇ̌1
0
�

Z 1

0

6xy D 3 � 6xy

so the functional is

J.y/ D

Z 1

0

.y3 � 6xy/C 3:

(6) Functional

J.y/ D

Z 1

0

.2xy3 C ex siny C 3x2y2 � y0 C y0ex cosy/dx

with

(i) y.0/ D 0, y.1/ D 1,
(ii) y.0/ D 0, y.1/ D

p
8.

It is easy to see that

J.y/ D

Z 1

0

d

dx
.x2y3 C ex siny/dx D

�
x2y3 C ex siny

�1
0
D c

for any y.

3.3.2 Variable-endpoint problems

If we do not fix the right point of y, then the set of admissible perturbations will change. We still have �.a/ D 0 but
�.b/ does not have to be 0. Then in Eq. (11) we would have an extra term Ly0.x; y; y

0/�.b/ D 0 for all admissible �.
We then have an extra condition Ly0.x; y; y0/ D 0 at x D b, besides the Euler-Lagrange equation.

Example 3.12. (1)

J.y/ D

Z �

0

.y0.x/2 C y.x/2 � 2y.x/ sin x/dx

(2)

J.y/ D

Z �

0

.y2 � y02/dx

where y 2 C 1Œ0; ��. We place no restrictions on the two endpoints. In this case y00 C y D 0 and we find8<:y.x/ D a sin x C b cos x

y0.0/ D y0.�/ D 0

i.e. a D 0. yb.x/ D b cos x are extremals. J.yb/ D 0 for any b. Next we require y.0/ D y.�/ D 0. In this
case 8<:y.x/ D a sin x C b cos x

y.0/ D y.�/ D 0
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x

y

.x0; y0/

.x1; y1/

Figure 7: shortest path between two points on the plane.

We find b D 0, and so ya.x/ D a sin x and J.ya/ D 0 for any a. But if we take y.x/ D x.x � �/, then
J.y/ < 0. In fact J.˛y/ < 0 for any ˛ > 0 and if we let ˛ ! 1 then J.˛y/ ! �1. The functional J is
not bounded from below. It is indeed bounded from above and the solutions come out of the Euler-Lagrange
equation are maximizers.

(3) Functional

J.y/ D

Z 1

0

..y0 � x/2 C 2xy/dx

with y 2 C 1Œ0; 1� and y.0/ D 1. The Euler-Lagrange equation yields

2.y00 � 1/ D 2x

y00 D x C 1

y0 D
1

2
x2 C x C k

y D
1

6
x3 C

1

2
x2 C k1x C k2:

Now y.0/ D k2 D 1, and we use the extra condition Ly0 D 2.y0 � x/ D 0 at x D 1, so that y0.1/ D 1) k1 D

�1=2. The final solution is thus

y D
1

6
x3 C

1

2
x2 �

1

2
x C 1:

Since J is a convex function of y, this is the unique optimal solution.

3.3.3 Multiple Degrees of Freedom

It is straightforward to extend the derivation of the Euler-Lagrange equation in Section 3.3 to multiple degrees of free-
dom settings, i.e. when y D .y1; : : : ; yn/T 2 Rn: simply interpretLy andLy0 as gradients and replace multiplications
by inner products in Eqs. (11) and (12). The resulting equation is the same as Eq. (13). Write out for each coordinates

Lyi
D

d

dx
Ly0

i
8i D 1; : : : ; n:
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Example 3.13. Consider the problem of finding the shortest path between two points .x0; y0/ and .x1; y1/ on the
plane R2 (see Fig. 7). The problem can be formulated as finding the optimal(

x D x.t/ with x.0/ D x0; x.1/ D x1

y D y.t/ with y.0/ D y0; y.1/ D y1

for t 2 Œ0; 1� that minimizes

J.x; y/ D

Z 1

0

p
x02 C y02dt:

J.x; y/ is convex, so we will have a unique solution. The Euler-Lagrange equations are8̂̂̂<̂
ˆ̂:
d

dt

x0p
x02 C y02

D 0

d

dt

y0p
x02 C y02

D 0

so that x0 is constant and y0 is constant. From the boundary conditions we get x0 D .x1 � x0/=.1 � 0/ D .x1 � x0/

and similarly y0 D .y1 � y0/=.1 � 0/ D .y1 � y0/. The optimal value is

J � D

Z 1

0

p
.x1 � x0/2 C .y1 � y0/2dt D

p
.x1 � x0/2 C .y1 � y0/2:

Example 3.14. Consider

J.u; v/ D

Z �=2

0

.u02 C v02 C 2uv/dx

where u; v 2 C 1Œ0; �=2� and u.0/ D v.0/ D 0, u.�=2/ D v.�=2/ D 1. From the Euler-Lagrange equation8̂<̂
:
d

dx
2u0 � 2v D 0

d

dx
2v0 � 2u D 0

)

(
u00 � v D 0

v00 � u D 0

and so u0000 � u D 0 with u.0/ D 0, u.�=2/ D 1, u00.0/ D 0, and u00.�=2/ D 0. We can also see that v D u. The
solution for u is

u.x/ D a cos x C b sin x C c cosh x C d sinh x

and from the initial conditions

0 D u.0/ D aC c

0 D u00.0/ D �aC c

)
)

(
a D 0

c D 0

1 D u.
�

2
/ D b C d sinh

�

2

1 D u00.
�

2
/ D �b C d sinh

�

2

9>=>;)
8̂<̂
:
b D 0

d D
1

sinh.�=2/

So the final solutions for u and v are 8̂̂<̂
:̂
u.x/ D

sinh x
sinh�=2

v.x/ D
sinh x

sinh�=2
:

The value of J is

J.u; v/ D

Z �=2

0

"
2

�
cosh x

sinh�=2

�2
C 2

�
sinh x

sinh�=2

�2#
dx D 2

 Z �=2

0

cosh 2xdx

!
=.sinh2 �=2/

D sinh�=.sinh2 �=2/ � 2:18:
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What if we take the straight line between .0; 0/ and .1; �=2/? Let u.x/ D v.x/ D .�=2/x, then u0 D v0 D �=2 so

J.u; v/ D

Z �=2

0

�
�2

2
C
�2

2
x2
�
dx D

�2

2
�
�

2
C
�2

2
�
1

3

�3

8
D
�3

4
C
�5

48
> 7:

3.4 Variational Problems With Constraints

3.4.1 Integral Constraints

Example 3.1 and Example 3.2 are all calculus of variations problems with integral constraints. Let’s derive necessary
conditions for optimality for such problems. Suppose we want to minimize

J.y/ D

Z b

a

L.x; y; y0/dx

with usual boundary condition and an additional constraint that

C.y/ D

Z b

a

M.x; y; y0/dx D C0; (14)

where M is a function from the same class as L, and C0 is a given constant. Suppose y is optimal. Then for y C ˛�
to be admissible, the perturbation � must preserve the constraint (in addition to vanishing at the endpoints as before).
In other words, we must have C.y C ˛�/ D C0 for all ˛ sufficiently close to 0. In terms of the first variation of C ,
this property is easily seen to imply that

ıC jy .�/ D 0:

Repeating the same calculation as in our original derivation of the Euler-Lagrange equation, we obtainZ b

a

�
My.x; y; y

0/ �
d

dx
My0.x; y; y

0/

�
� D 0 (15)

as Eq. (12). For every � satisfying Eq. (15), we should have

ıJ jy .�/ D

Z b

a

�
Ly.x; y; y

0/ �
d

dx
Ly0.x; y; y

0/

�
� D 0:

In summary, Z b

a

�
Ly �

d

dx
Ly0

�
� D 0 8� such that

Z b

a

�
My �

d

dx
My0

�
� D 0:

Similar to the situation in finite-dimensional optimization, we conclude that there exists a constant � (a Lagrange
multiplier) such that �

Ly �
d

dx
Ly0

�
C �

�
My �

d

dx
My0

�
D 0

for all x 2 Œa; b�. Rearrange the terms we get

.LC �M/y D
d

dx
.LC �M/y0 ;

i.e. the Euler-Lagrange equation holds for the augmented Lagrangian L C �M . In other words, y is an extremal of
the augmented cost functional

.J C �C/.y/ D

Z b

a

�
L.x; y; y0/C �M.x; y; y0/

�
dx: (16)

28



There is a catch: if y is an extremal of the constraint functional C , i.e. it satisfies the Euler-Lagrange equation for
M , then all of its nearby curves would violate the constraint. For example, consider the length constraint C.y/ DR 1
0

p
1C .y0/2dx together with the boundary conditions y.0/ D y.1/ D 0. Clearly y � 0 is the only admissible

curve (it is the unique global minimizer of the constraint functional), so no matter what J is, the solution is y � 0, but
it is not an extremal for any J .

To summarize, we used heuristics and derived the following first-order necessary condition for constrained opti-
mality: if y is an extremum for the constrained problem and is not an extremal for the constraint functional C (i.e.
does not satisfy the Euler-Lagrange equation for M ), then it is an extremal of the augmented cost functional Eq. (16)
for some � 2 R. To prove it rigorously, we can consider a two parameter family of perturbed curves yC ˛1�1C ˛2�2
and use the inverse function theorem.

3.4.2 Non-integral Constraints

If instead of an integral constraint, we have an equality constraint which must hold point-wise:

M.x; y.x/; y0.x// D 0 (17)

for all x 2 Œa; b�, then the first-order necessary condition for optimality is similar to that for integral constraint, but the
Lagrange multiplier is now a function of x. In other words, the Euler-Lagrange equation must hold for the augmented
Lagrangian

LC �.x/M

for some function � W Œa; b� ! R. An additional assumption to rule out degenerate cases is that there are at least
two degrees of freedom and that everywhere along the curve we have My0 ¤ 0, or if y0 does not appear in Eq. (17),
My ¤ 0. The integral constraint Eq. (14) is global, in the sense that it applies to the entire curve. In contrast, the
non-integral constraint Eq. (17) is local, i.e., applies to each point on the curve. Locally around each point, there is no
essential difference between the two. This suggests that for each x there should exist a Lagrange multiplier, and these
can be pieced together to give the desired function � D �.x/.

Example 3.15. What is the shortest path between two points on earth? I.e. we want

min
Z 1

0

p
x2 C y2 C z2dt

subject to the constraint that
x2.t/C y2.t/C z2.t/ D R2

for each t 2 Œ0; 1�. Geometrically, the solution can be obtained as follows: take the two points and the center of the
mass, which defines a plane that cuts the sphere. The smaller of the two arcs is the shortest path. This is called the
geodesics.

Example 3.16. There can be many solutions to the constrained-version Euler-Lagrange equation and not all of them
are minimizers. Suppose we want

minJ.y/ D
Z b

a

.y0/2dx s:t: C.y/ D

Z b

a

y2dx D 1

and with boundary conditions y0.a/ D y0.b/ D 0. Note that J.y/ � 0 for any y. The Euler-Lagrange equation is

d

dx
.2y0 � 0/ D .0 � 2�y/) y00 C �y D 0
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If � D 0, then y is constant and from which y D 1=
p
b � a. For this y we have J.y/ D 0 so y is the unique

minimizer of J under the constraint. In general, � � 0. To see this, note

y00 C �y D 0) y00 � y D ��y2)

Z b

a

y00 � y D ��

Z b

a

y2) �

Z b

a

.y0/2 D ��) � � 0:

Another way to see � � 0 is that, if � D �˛2 < 0, then the solution would be y.x/ D c1e˛xC c2e�˛x . The boundary
conditions yields y D 0, which does not satisfy the constraint.

For � D ˛2 > 0, the solution is y.x/ D c1 cos˛x C c2 sin˛x. The boundary condition yields sin˛.a � b/ D 0.
This implies that ˛.b � a/ D k� ) �k D k

2�2=.b � a/2. This gives us the solutions

yk.x/ D Ak cos
k�.x � a/

b � a
:

We then have C.y/ D 1) A2
k
D 2=.b � a/. The solutions are

yk.x/ D

r
2

b � a
cos

k�.x � a/

b � a

and J.y/ D k2�2=.b � a/2. The Lagrangian multiplier method gives us many critical points.

Example 3.17. Consider the problem

minJ.y/ D
Z �

0

�
2 sin x � y C y02

�
dx

with y 2 C 1Œ0; ��, boundary conditions y.0/ D y.�/ D 0, and an integral constraint

C.y/ D

Z �

0

ydx D 1:

The Euler-Lagrange equation yields

d

dx
.2y0/ � 2 sin x � � D 0

y00.x/ D sin x C
�

2

y.x/ D � sin x C
�

4
x2 C c1x C c2:

From the boundary conditions

0 D y.0/ D c2) c2 D 0

0 D y.�/ D
�

4
�2 C c1� ) c1 D �

��

4

9=;) y.x/ D � sin x C
�

4
x2 �

��

4
x:

From the constraint C.y/ D 1 we get � D �72=�3. So the solution is

y.x/ D � sin x �
18

�3
x2 C

18

�2
x:

Since J is convex, the solution is the unique minimizer.

Example 3.18. We revisit Example 3.1, in a more general setting. We consider a closed curve described by(
x D x.t/

y D y.t/
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with t 2 Œ0; 1� and x.0/ D x.1/, y.0/ D y.1/. The area enclosed by the curve is

A.x; y/ D
1

2

Z 1

0

.xy0 � x0y/dt:

The problem is

max
x;y

A.x; y/ s:t:

Z 1

0

p
x02 C y02dt D C0:

We solve for the Euler-Lagrange equation:

L D
.xy0 � x0y/

2
) Lx0 D �

y

2
; Ly0 D

x

2
; Lx D

y0

2
; Ly D �

x0

2
:

M D
p
x02 C y02) Mx0 D

x0

M
; My0 D

y0

M
; Mx DMy D 0:

So 8̂̂<̂
:̂
d

dx

�
�
y

2
C �

x0

M

�
D
y0

2

d

dx

�
x

2
C �

y0

M

�
D �

x0

2

)

8̂̂<̂
:̂
y0 D �

d

dt

�
x0

M

�
x0 D ��

d

dt

�
y0

M

� )
8̂̂<̂
:̂
y D �

x0

M
C c2

x D ��
y0

M
C c1:

This implies that
.x � c1/

2
C .y � c2/

2
D �2;

so the solution is a circle, with radius j�j. From the constraint 2�j�j D C0, we get

j�j D
C0

2�
) � D ˙

C0

2�
:

Also note that C 20 D 4�
2j�j2 D 4� � .�j�j2/ D 4� � Amax, so we have the inequality

C 20 � 4�A:
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4 Introduction to Optimal Controls

The control system is (
Px D f .t; x; u/

x.0/ D x0:

Here x 2 Rn is the state, u 2 U � Rm is the control, t 2 R is time, and x0 is the initial state. Note the state has
dimension n and the control has dimension m. The control u can affect the evolution of the state through the system.
We want to find a control from

U D fu W Œ0; T �! U j u.�/ measurableg

so as to minimize some objective function

J.u/ WD

Z T

0

L.t; x.t/; u.t//dt CK.T; x.T // (18)

where L W R � Rn � U ! R is the Lagrangian, and K W R � Rn ! R is the terminal cost.

4.1 Examples of Control Problems

Here we present several examples of control problems, mostly from Evans 2005.

Example 4.1 (Control of Production and Consumption). Suppose x.t/ is the output of an economy at time t � 0. The
output in each period is either reinvested or consumed. Let u.t/ 2 Œ0; 1� be the fraction of output reinvested at time t ,
so that

x.t/ D .1 � u.t//x.t/C u.t/x.t/ WD C.t/C I.t/:

The dynamic is (
Px.t/ D kI.t/ D ku.t/x.t/

x.0/ D x0;

for some k > 0. Namely the growth rate of the output is proportional to the investment. We want to maximize the
total consumption in Œ0; T �, so we formulate our problem as

min
u
J.u/ D

Z T

0

�C.t/dt D

Z T

0

�.1 � u.t//x.t/dt:

To see the problem in extreme cases, note that if we take u � 0, i.e. we consume all output produced in each period,
then the system becomes (

Px.t/ D 0

x.0/ D x0

so that x.t/ D x0 for all t . The total output of the economy does not grow and stay constant over time. The total
consumption is then

R T
0
1 � x0dt D T x0. If we take u � 1, i.e. we invest all the output and do not consume for all the

period, then obviously our total consumption will be 0.
We shall see that the optimal solution is a bang-bang control (Fig. 8a)

u�.t/ D

(
1 if 0 � t � t�;

0 if t� < t � T

for an appropriate switching time t� 2 Œ0; T �. In other words, we should invest all output up until time t�, after which
we only make consumption but no investment.
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0
T

u� D 1

u� D 0

t�

(a) The bang-bang control of the production and con-
sumption problem.

t

x

x�.t/

x0

(b) The optimal trajectory corresponding to the bang-
bang-control.

Figure 8: The optimal control and the optimal trajectory in Example 4.1.

Given this information, let’s find this optimal switching time. When u�.t/ D 1, the dynamic and the corresponding
solution are (

Px.t/ D kx.t/; 0 � t � t�

x.0/ D x0
) x.t/ D x0e

kt

so that at time t� the output is x.t�/ D x0ekt
�

. When u�.t/ D 0 the dynamic and the solution are(
Px.t/ D 0; t� � t � T

x.t�/ D x0e
kt�

) x.t/ D x0e
kt� :

The optimal trajectory is thus like Fig. 8b. The optimal consumption corresponding to the bang-bang control is thenZ t�

0

0dt C

Z T

t�
x0e

kt�dt D .T � t�/x0e
kt� :

We want to find the maximizer of the function �.s/ D .T � s/eks so we set its derivative to zero

�0.s/ D �eks C .T � s/keks D 0

+

.T � s/ � k D 1 ) s D T �
1

k

so the optimal switching time is t� D T � 1
k

. The larger k, the later we can do the switch, while smaller k implies that
we should do the switch earlier. This makes intuitive sense: if investments have high return, then it is best to constrain
the consumption at present and invest more, so that we can have greater accumulation of wealth in the future; on the
other hand if investments have low return, then we do not have incentives to commit to long-term investments, but
should instead enter into consumption early on.

Example 4.2 (Pendulum). We want to apply forces to a swinging pendulum so as to bring it to stop in minimum time.
Let �.t/ denote the angle of the pendulum at time t . Recall The equation of motion with damping and with small
angle approximation is (

R�.t/C � P�.t/C !2�.t/ D 0

�.0/ D �1; P�.0/ D �2:

Let u.�/ denote the magnitude of the torque applied to the object around the pivot, with direction perpendicular to the
plane of motion. We require juj � 1. The dynamics now become(

R�.t/C � P�.t/C !2�.t/ D u.t/

�.0/ D �1; P�.0/ D �2:
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h.t/

Figure 9: Illustration of the moon lander problem.

If we let x.t/ D

 
x1

x2

!
WD

 
�

P�

!
, then we can write the dynamics as

Px.t/ D

 
P�

R�

!
D

 
x2

��x2 � !
2x1 C u.t/

!
D f .x; u/:

The objective is to minimize
J.u/ D �.u/

where �.u/ is the first time that x.t/ D 0 (i.e. �.t/ D P�.t/ D 0). We see that this is a free-time, fixed-endpoint
problem.

Example 4.3 (Moon Lander). How do we land a spacecraft on the moon surface, so as to use the least amount of fuel
(Fig. 9)? To model this problem, we consider these variables:

� h.t/, the height of the spacecraft at time t ;

� v.t/ D Ph.t/, the velocity of the spacecraft;

� m.t/, the mass of the spacecraft;

� u.t/, the thrust at time t .

u.t/ is our control, and we assume 0 � u.t/ � 1. If u.t/ D 0, then we turn off the engine and let the spacecraft do
free fall, and u.t/ D 1 means we apply the maximal thrust against gravity. As the we burn the fuel, the mass m.t/ of
the spacecraft will change over time. We assume the rate of change is inversely proportional to u.t/. The motion of
the spacecraft according to Newton’s second law is (take the upward direction as the positive direction)

m.t/ Rh.t/ D �gm.t/C u.t/:

We can write the dynamics as 8̂̂̂̂
<̂
ˆ̂̂:
Pv.t/ D �g C

u.t/

m.t/

Ph.t/ D v.t/

Pm.t/ D �ku.t/:
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Let x.t/ D .v.t/; h.t/;m.t//T . We can summarize the dynamics as Px.t/ D f .x.t/; u.t//, with x.0/ D x0 given.
Moreover, we have additional physical constraints: h.t/ � 0 and m.t/ � 0 for all t .

The objective is to minimize the amount of fuel used, or in other word maximize the remaining fuel when we
landed. So we want to minimize

J.u/ D �m.�/

where � is the first time that h.t/ D v.t/ D 0.

Example 4.4 (Rocket Car). Imagine we have a railroad rocket car with engines on both sides (Fig. 10). We introduce
the variables

� q.t/, the car’s position at time t ;

� v.t/ D Pq.t/, the car’s velocity at time t ;

� u.t/, the thrust from the rockets,

where �1 � u.t/ � 1.
Given initial position and velocity, we want to figure out how to fire the rocket so as to bring the car to the origin

with zero velocity in a minimal amount of time. Assuming the car has mass m, the law of motion is

m Rq.t/ D u.t/:

We let x.t/ denote .q.t/; v.t//T , and normalize m to 1, so that we can write the dynamics as8̂̂<̂
:̂
Px.t/ D

 
0 1

0 0

!
x.t/C

 
0

1

!
u.t/

x.0/ D x0 D .q0; v0/
T :

Our objective is to minimize the functional
J.u/ D �.u/

where �.u/ is the first time that q.t/ D v.t/ D 0.
For this linear system, the optimal control will be a bang-bang control, explained in Section 4.3. Meanwhile, let’s

try to see what the dynamics are when u D 1 or u D �1.

� When u � 1, the dynamics become (
Pq D v

Pv D 1:

We then have
v Pv D Pq )

1

2
.v2/0 D q0 )

1

2
v2.t/ �

1

2
v.t0/ D q.t/ � q.t0/

for some t0 for which u.t0/ D 1. We see that as long as the control is set for u � 1, the trajectory of the state
x D .q; v/T stays on the curve v2 D 2q C b for some constant b. See Fig. 11a.

Figure 10: The rocket car problem.
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q

v

(a) Illustration of the rocket car problem. When the control is u � 1, the state trajectory
x D .q; v/T stays on the curve v2 D 2q C b for some constant b. Since we go toward the
positive direction, q and v increase toward the positive direction.

q

v

(b) Illustration of the rocket car problem. When the control is u � �1, the state trajectory
x D .q; v/T stays on the curve v2 D �2qC c for some constant c. Since we go toward the
negative direction, q and v increase toward the negative direction.
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q

v

x.0/

x.t�/

u� D �1

u� D 1

Figure 12: Geometric solution of the rocket car problem.

� When u � �1, we have (
Pq D v

Pv D �1:

and hence 1
2
.v2/0 D �q0. Let t1 belong to an interval where u � �1 and integrate, we can

v2.t/ D �2q.t/C .2q.t1/ � v
2.t1//:

Thus the state trajectory follows the curve v2 D �2q C c for some constant c. See Fig. 11b.

Suppose we start at x.0/ in Fig. 12, so that the car initially has positive velocity and position. We first firing the
engine backward, to steer it toward point x.t�/. Then at time t� we give a positive force on the car, to stop it at the
origin.

4.2 Hamiltonian Mechanics

Calculus of variations and optimal control theory have their connections with Hailtonian mechanics and classical
mechanics. We define the momentum as p WD L Px.t; x; Px/ and we define the Hamiltonian as

H.t; x; Px; p/ WD p � Px � L.t; x; Px/:

Note that

Px.t/ D Hp.t; x; Px; p/; (19)

Pp.t/ D
d

dt
L Px.t; x; Px/ D Lx.t; x; Px/ D �Hx.t; x; Px/: (20)

These two equations

Px D Hp; Pp D �Hx (21)
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are known as Hamilton’s canonical equations. Note that the partial derivative of H with respect to Px is zero:

H Px D p � L Px.t; x; Px/ D 0:

To see the meaning of the Hamiltonian in physics, L=let x.t/ D .x1.t/; x2.t/; x3.t//
T 2 R3 be the position of a

particle, Px.t/ the velocity and U D U.x/ the potential energy, so that �Ux is the force. Let

L.t; x; Px/ D
1

2
mk Pxk2 � U.x/

be the difference between kinetic energy and potential energy. Note that p D L Px D m Px is the momentum. The
Euler-Lagrange equation yields

d

dt
L Px D Lx )

d

dt
.m Px/ D �Ux :

We have recovered Newton’s second law: the derivative of the momentum is the force.
Hamilton’s principle of least action states that trajectories x.t/ of mechanical system are extremals of the func-

tional Z t1

t0

�
1

2
mk Pxk2 � U.x/

�
dt;

which is called the action integral. If the potential is 0, then the trajectories are extremals of the functional
R t1
t0

�
1
2
mk Pxk2

�
dt ,

which are straight lines.
Newton’s second law, the derivative of momentum equals to the force, is a differential statement that holds point-

wise in time, while the principle of least action is a statement about the entire trajectory. They are equivalent: if the
action integral is minimized, then every small piece of the trajectory must also deliver minimal action. In the limit as
the length approaches zero, we recover the differential statement.

The Hamiltonian is

H D p � Px � L.t; x; Px/ D
1

2
mk Pxk2 C U.x/ D kinetic energy C potential energy;

which is the total mechanical energy.

4.3 Bang-bang Principle

We address the following basic question: given an initial point x0 and a target set S � Rn, does there exist a control
steering the system to S in finite time? Here we will not concern ourselves with any payoff function. We take S D f0g
and we only investigate linear systems (

Px.t/ DMx.t/CNu.t/

x.0/ D x0

where the state x.t/ is n-dimensional, the control u.t/ is m-dimensional, M is an .n� n/ matrix and N is an .n�m/
matrix. We assume the control lies in U D Œ�1; 1�m.

Recall how we solve for the ODE (
Px.t/ D a.t/x.t/C b.t/

x.0/ D x0
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where x.t/ is a real-valued function. We let A.t/ D
R t
0
a.s/ds, and then multiply both sides by e�A.t/,

Px.t/ � a.t/x.t/ D b.t/

e�A.t/ Px.t/ � a.t/e�A.t/x.t/ D e�A.t/b.t/

d

dt

h
e�A.t/x.t/

i
D e�A.t/b.t/

e�A.t/x.t/ D

Z t

0

e�A.s/b.s/ds C x0

+

x.t/ D eA.t/x0 C e
A.t/

Z t

0

e�A.s/b.s/ds:

In an entirely similar way, when x W R! Rn is multi-dimensional, the solution to the linear control system(
Px.t/ DMx.t/CNu.t/

x.0/ D x0

is

x.t/ D etMx0 C e
tM

Z t

0

e�sMNu.s/ds (22)

where etM is defined as
P1
kD0 t

kM k=kŠ.

Definition 4.5 (Reachable set). We define the reachable set for time t to be the set C.t/ that consists of initial points
x0 for which there exists a control such that x.t/ D 0. We define the reachable set C to be

C D
[
t�0

C.t/:

Observe that x0 2 C.t/ if and only if there is a control u 2 U such that x.t/ D 0, if and only if

0 D x.t/ D etMx0 C e
tM

Z t

0

e�sMNu.s/ds

for some control u 2 U, if and only if

x0 D �

Z t

0

e�sMNu.s/ds (23)

for some control u 2 U. From this we can get some information about the geometry of the reachable set from the
geometry of the control set U . Recall a set A is symmetric if x 2 A ) �x 2 A, and convex if for all � 2 Œ0; 1�,
x; x0 2 A) �x C .1 � �/x0 2 A.

Proposition 4.6. The reachable set C is symmetric and convex. Also, if x0 2 C.t 0/, then x0 2 C.t/ for all t � t 0.

Proof. Symmetry is obvious: if x0 2 C.t/, then according to Eq. (23), x0 D �
R t
0
e�sMNu.s/ds for some control

u.�/ 2 U. Therefore �x0 D �
R t
0
e�tMN.�u.s//ds and �u 2 U since the set U is symmetric, so that x0 2 C.t/.

If S D f0g can be reached in time t 0 via some control u0, then it can certainly be reached at any later time t � t 0:
just set the control u to be equal to u0 before time t 0 and zero after time t 0. Convexity of C follows from convexity of
U .

Recall our control set is U D Œ�1; 1�m. A bang-bang control is a control that only take extreme values (1 or �1).
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Definition 4.7. A control u D .u1; : : : ; um/
T 2 U is called bang-bang if ui .t/ D 1 or �1 for all t and all i D

1; : : : ; m

The bang-bang principle (Theorem 4.9) states that, if there is some control that steers the initial state x0 of a linear
system to origin, there must exist a bang-bang control that can also steers x0 to origin. Thus, to search for the desired
control, we can first search for a bang-bang control. If there does not exist a bang-bang control, then there is no hope
for finding other ones. To prove it we first need the Krein-Milman theorem (Theorem 4.8) below.

Theorem 4.8 (Krein-Milman Theorem). LetX be a locally convex topological vector space,K a nonempty, compact,
convex subset of X . Then

� K has at least one extreme point.

� K is the closure of the convex hull of its extreme points.

Proof. See page 125 of Lax 2002.

Theorem 4.9 (Bang-bang principle). Let t > 0 and suppose x0 2 C.t/ for the system(
Px.t/ DMx.t/CNu.t/

x.0/ D x0:

Then there exists a bang-bang control u which steers x0 to S D f0g at time t .

Proof. Define
K D fu 2 U j u steers x0 to 0 at time tg:

K is nonempty since x0 2 C.t/. It is convex since U D Œ�1; 1�m is convex. Since U is weak* compact according
to the Banach-Alaoglu theorem, we prove K is closed in U so that it is also weak* compact. Let fung1nD1 � K be a
sequence such that un ! u 2 U. We need to show u 2 K. From un 2 K we have

x0 D �

Z t

0

e�tMNun.s/ds 8n 2 N

by Eq. (23) and according to the definition for weak* convergence,

�

Z t

0

e�tMNun.s/ds ! �

Z t

0

e�sMNu.s/ds as n!1:

Thus we have

x0 D lim
n!1

�

Z t

0

e�tMNun.s/ds D �

Z t

0

e�sMNu.s/ds

and so u 2 K. This proves that K is convex and compact. Then we can apply Theorem 4.8 to conclude that there exists
an extreme point u� 2 K. We next show that this extreme point is indeed a bang-bang control.

We must show ju�i .s/j D 1;8i D 1; : : : ; m for 0 � s � t almost everywhere. Suppose to the contrary that for
some index i and a subset E � Œ0; t � of positive measure such that ju�i .s/j < 1 for s 2 E. In fact, there exist a number
� > 0 and a subset F � E of positive measure such that

ju�i .s/j � 1 � �

for s 2 F . Choose any control v 2 U; v 6� 0 such that vj D 0 for any j ¤ i and
R
F
e�tMNv.s/ds D 0. Define

u1 WD u
�
C �v

u2 WD u
�
� �v:
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We claim that u1; u2 2 K. To see this, first observeZ t

0

e�tMNu1.s/ds D �

Z t

0

e�tMNu�.s/ds � �

Z t

0

e�tMNv.s/ds D x0 � 0 D x0;Z t

0

e�tMNu2.s/ds D �

Z t

0

e�tMNu�.s/ds C �

Z t

0

e�tMNv.s/ds D x0 C 0 D x0:

Also, on set Œ0; t � n F we have u1 D u� and on F we have ju1j � ju�j C �jvj � 1 � � C � D 1, and similarly for u2.
Hence u1; u2 2 K. We found two points in K, distinct from u�, such that

u� D
1

2
u1 C

1

2
u2;

a contradiction to u� being an extreme point in K. This concludes the proof that u� is indeed a bang-bang control.

4.4 Linear Time-Optimal Control

In this subsection, we consider a specific problem within the setting of linear systems: time-optimal control. The
dynamics are as before (

Px.t/ DMx.t/CNu.t/

x.0/ D x0:
(24)

Recall in previous subsection we did not specify the objective function. Here we investigate minimization of

J.u/ D �.u/ (25)

where �.u/ is the first time that the dynamic system hits S D f0g. This is free-time, fixed-endpoint problem. We
first show the existence of optimal bang-bang control (if there is optimal control at all), then we state the maximum
principle (Theorem 4.11) for the problem.

Theorem 4.10. Let x0 2 Rn. There exists an optimal bang-bang control u�.

Proof. Let �� D infx02C.t/ t . We want to show that x0 2 C.��/, namely there exists an optimal control u� steering
x0 to 0 at time ��.

Choose a decreasing sequence t1 � t2 � � � � such that x0 2 C.tn/ and tn ! ��. Since x0 2 C.tn/, by Eq. (23)
there exists a control un such that

x0 D �

Z tn

0

e�tMNun.s/ds:

If necessary, redefine un to be 0 for tn � s � t1. Since U is weak* compact, in the sequence fung there exists a
subsequence funk

g and a control u� 2 U such that unk
! u� as nk ! 1. We assert that u� is an optimal control.

We have u�.s/ D 0 for s � ��, and

x0 D �

Z tnk

0

e�tMNunk
.s/ds D �

Z t1

0

e�tMNunk
.s/ds

since unk
D 0 for s � tnk

. Let nk !1:

x0 D lim
nk!1

�
�

Z t1

0

e�tMNunk
.s/ds

�
D �

Z t1

0

e�tMNu�.s/ds D �

Z ��

0

e�tMNu�.s/ds

since u�.s/ D 0 for s � ��. Hence x0 2 C.��/, and therefore u� is optimal. By Theorem 4.9 there in fact exists an
optimal bang-bang control.
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Theorem 4.11 (Potryagin Maximum Principle for Linear Time-Optimal Control). Let u� 2 U be the optimal control
for the problem Eqs. (24) and (25). Then there exists an n � 1 nonzero vector h such that

hT e�tMNu�.t/ D max
u2U
fhT e�tMNug for all 0 � t � ��: (26)

Proof. We define K.t; x0/ to be the set of states that can be reached at time t via some control with initial condition
x.0/ D x0. By Eq. (22), x 2 K.t; x0/ if and only if

x D etMx0 C e
tM

Z t

0

e�sMNu.s/ds (27)

for some control u 2 U. It is easy to deduce convexity and closedness of K.t; x0/ from convexity and weak*
compactness of U.

Note that for t1 � t2 we have K.t1; x0/ � K.t2; x0/, namely if we can reach some x 2 K.t1; x0/, in time t1, then
we can certainly reach x using more time. Let �� D minJ.u/ denote the minimum time it takes to steer the initial
state x0 to 0, using the optimal control u�. Then 0 2 @K.��; x0/, i.e. the final state 0 must lie on the boundary of the
set K.��; x0/. To see this, note that if 0 lies outside of K.��; x0/, then this means we cannot reach 0 at time ��; if it
lies in the interior then we can reach 0 in a shorter time.

Since 0 2 @K.��; x0/ and K.��; x0/ is convex, by the supporting hyperplane theorem there exists some g ¤ 0

such that
g � x � 0 for all x 2 K.��; x0/:

From Eq. (27), for 0 2 K.��; x0/ and an arbitrary x 2 K.��; x0/ we have

x D e�
�Mx0 C e

��M

Z ��

0

e�sMNu.s/ds

0 D e�
�Mx0 C e

��M

Z ��

0

e�sMNu�.s/ds

for some control u 2 U. Then

gT

 
e�
�Mx0 C e

��M

Z ��

0

e�sMNu.s/ds

!
� 0 D gT

 
e�
�Mx0 C e

��M

Z ��

0

e�sMNu�.s/ds

!
:

Define hT WD gT e�
�M . Then Z ��

0

hT e�sMNu.s/ds �

Z ��

0

hT e�sMNu�.s/ds (28)

for some control u 2 U. This must imply Eq. (26), for if

hT e�sMNu�.s/ < max
u2U
fhT e�sMNug

for s 2 E where E � Œ0; ��� has positive measure, then we can design a new control

Ou.s/ D

(
u�.s/ s … E

u.s/ s 2 E

where u.s/ is defined so that
hT e�sMNu.s/ D max

u2U
fhT e�sMNug:

We then have Z ��

0

hT e�sMN Ou.s/ds >

Z ��

0

hT e�sMNu�.s/ds;

a contradiction to Eq. (28).
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To see how Theorem 4.11 is related to the general maximum principle (Theorem 5.1), the Hamiltonian is effectively
H.x; p; u/ D .Mx CNu/ � p. We can define the costate as p�.t/T D hT e�tM . Then from Theorem 4.11 we have

H.x�.t/; p�.t/; u�.t// D p�.t/T
�
Mx�.t/CNu�.t/

�
D max

u2U

˚
p�.t/T

�
Mx�.t/CNu�.t/

�	
D max

u2U
H
�
x�.t/; p�.t/; u

�
:

The maximum principle offers us a necessary condition for finding the optimal solution. We may not be able to
immediately find the optimal control by solving for Eq. (26), but it can give use useful information for the solution.
We next use some examples to illustrate how the maximum principle can be applied.

Example 4.12 (Rocket Car). Recall the rocket car problem from Example 4.4. This is a free time, fixed endpoint
problem where we want to steer the car to the origin using shortest possible time. The dynamic is

Px.t/ D

 
0 1

0 0

!
x.t/C

 
0

1

!
u.t/

for x.t/ D .x1.t/; x2.t//T , U D Œ�1; 1�. According to the maximum principle, there exists h ¤ 0 such that

hT e�tMNu�.t/ D max
u2U
fhT e�tMNug

where M D

 
0 1

0 0

!
and N D

 
0

1

!
. To use the maximum principle, we meed to compute e�tM . In this case it is

simple:

M 0
D I; M D

 
0 1

0 0

!
; M 2

D

 
0 1

0 0

! 
0 1

0 0

!
D

 
0 0

0 0

!
and so M k D 0 for all k � 2. Consequently

e�tM D I � tM D

 
1 �t

0 1

!
;

e�tMN D

 
1 �t

0 1

! 
0

1

!
D

 
�t

1

!
;

hT e�tMN D
�
h1 h2

� 
�t

1

!
D �th1 C h2:

The maximum principle says
.�th1 C h2/u

�.t/ D max
juj�1
f.�th1 C h2/ug

so
u�.t/ D sign.�th1 C h2/:

Therefore the optimal control switches at most once. Thus, the geometric solution we obtained earlier is indeed
optimal.

Example 4.13 (Control of a Vibrating Spring). Consider a ball with unit mass hanging from a spring (Fig. 13). Our
goal is to apply a control u.t/ 2 Œ�1; 1� so as to bring the ball to stop in minimal time. This is again a free time, fixed
endpoint problem. The dynamic is

Rx C x D u;
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Figure 13: Illustration of the vibrating spring problem.

namely the forces it experiences (besides gravity and the hanging force) are the spring force and the control. We write
the dynamic as

Px.t/ D

 
0 1

�1 0

!
x.t/C

 
0

1

!
u.t/ DWMx.t/CNu.t/:

where x.t/ D .x1.t/; x2.t//T . Again we need to compute the matrix exponential e�tM . Observe that

M 0
D I;

M 1
DM;

M 2
D �I;

M 3
D �M;

M 4
D I;

so if k is even then M k oscillates between I and �I , while if k is odd then M k oscillates between M and �M . We
thus have

etM D I C tM C
t2

2Š
M 2
C � � �

D .1 �
t2

2Š
C
t4

4Š
� � � � /I C .t �

t3

3Š
C
t5

5Š
� � � � /M

D cos tI C sin tM

D

 
cos t sin t
� sin t cos t

!
:

So

e�tM D

 
cos t � sin t
sin t cos t

!
;

e�tMN D

 
cos t � sin t
sin t cos t

! 
0

1

!
D

 
� sin t
cos t

!
;

hT e�tMN D
�
h1 h2

� 
� sin t
cos t

!
D �h1 sin t C h2 cos t:

From Eq. (26), for each time t we have

.�h1 sin t C h2 cos t /u�.t/ D max
juj�1
f.�h1 sin t C h2 cos t /ug

and so
u�.t/ D sign.�h1 sin t C h2 cos t /:
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x1

x2

.1; 0/

(a) When u � 1.

x1

x2

.�1; 0/

(b) When u � �1.

Figure 14: State trajectory of the vibrating spring problem under the control u � 1 and u � �1 respectively.

If we let khk D 1, and choose ı such that �h1 D cos ı; h2 D sin ı, then

u�.t/ D sign.cos ı sin t C sin ı cos t / D sign.sin.t C ı//:

We see that u� switches between �1 and 1 every � units of time.
A geometric interpretation of the solution is also possible. When u � 1, the dynamic is(

Px1 D x2

Px2 D �x1 C 1:

The trajectory of the state .x1; x2/T follows a circle with center .1; 0/:

d

dt

�
.x1.t/ � 1/

2
C x22.t/

�
D 2.x1.t/ � 1/ Px1.t/C 2x2.t/ Px2.t/ D 0:

See Fig. 14a. Similarly, when u � �1 the trajectory follows a circle with center .�1; 0/ (Fig. 14b).
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x1

x2

.�1; 0/ .1; 0/

Figure 15: Geometric solution of the vibrating spring problem. Given an initial state x.0/ D .x1.0/; x2.0//T , we want
to steer it toward the origin. The optimal control corresponds to switch from one circle to the other.
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5 The Pontraygin Maximum Principle

In this section we introduce the Pontraygin Maximum Principle. It provides us necessary conditions for finding optimal
controls.

We define the Hamiltonian as
H.x; u; p/ D p � f .x; u/ � L.x; u/:

5.1 Free Time, Fixed Endpoint Problem

The system is (
Px D f .x; u/

x.0/ D x0:

The target is S D fx1g with x1 2 Rn. Objective:

J.u/ WD

Z �

0

L.x.t/; u.t//dt

where L W Rn � U ! R is the running cost, and � D �.u/ � 1 is the first time the state hits the target point x1.

Theorem 5.1 (Pontryagin Maximum Principle for Free Time, Fixed Endpoint Problem). Assume u� is the optimal
control and x� is the corresponding trajectory. Then there exists a function p� W Œ0; ���! Rn, called the costate, such
that

Px�.t/ D rpH.x
�.t/; p�.t/; u�.t//; (29)

Pp�.t/ D �rxH.x
�.t/; p�.t/; u�.t//; (30)

and
H.x�.t/; p�.t/; u�.t// D max

u2U
H
�
x�.t/; p�.t/; u

�
; 8t 2 Œ0; ���: (31)

Also
H.x�.t/; p�.t/; u�.t// � 0: (32)

Here �� denote the first time the state x�.t/ hits the target point x1.

5.2 Fixed Time, Free Endpoint Problem

The system is (
Px D f .x; u/

x.0/ D x0:

Objective:

J.u/ WD

Z T

0

L.x.t/; u.t//dt CK.x.T //:

Theorem 5.2 (Pontryagin Maximum Principle for Fixed Time, Free Endpoint Problem). Assume u� is the optimal
control and x� is the corresponding trajectory. Then there exists a function p� W Œ0; T �! Rn, called the costate, such
that

Px�.t/ D rpH.x
�.t/; p�.t/; u�.t//; (33)

Pp�.t/ D �rxH.x
�.t/; p�.t/; u�.t//; (34)
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and
H.x�.t/; p�.t/; u�.t// D max

u2U
H
�
x�.t/; p�.t/; u

�
; 8t 2 Œ0; T �: (35)

In addition the mapping
t ! H.x�.t/; p�.t/; u�.t// (36)

is constant. Finally we also have the terminal condition

p�.T / D rK.x�.T //:

5.3 Applications of the Maximum Principle

Example 5.3 (Control of Production and Consumption). Let’s see how we can apply the maximum principle to the
production and consumption problem (Example 4.1). For simplicity we take k D 1. This is a fixed time, free endpoint
problem. The dynamic is (

Px.t/ D u.t/x.t/

x.0/ D x0;

and the functional we want to minimize is

J.u/ D

Z T

0

�C.t/dt D

Z T

0

�.1 � u.t//x.t/dt:

The Hamiltonian is then

H.x; p; u/ D p � f .x; u/ � L.x; u/ D p � xuC .1 � u/x D x C ux.p � 1/:

The two canonical equations are
Px D Hp D ux;

Pp D �Hx D �1 � u.p � 1/:

Since there is no terminal cost, p.T / D 0. Finally, according to the maximum principle we need to solve the following
equation

H.x.t/; p.t/; u.t// D max
0�u�1

fx.t/C ux.t/.p.t/ � 1/g:

If follows that the optimal control takes the form

u.t/ D

(
1 if p.t/ > 1;

0 if p.t/ � 1:

To solve for the optimal control, we need to solve for p first:(
Pp.t/ D �1 � u.t/.p.t/ � 1/;

p.T / D 0:

If p.t/ � 1, then u.t/ D 0, so the equation becomes Pp.t/ D �1. The solution is then p.t/ D T � t . Consequently

T � t � 1 ) t � T � 1:

If p.t/ � 1, then u.t/ D 1. The ODE is then (
Pp.t/ D �p.t/;

p.T � 1/ D 1:
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The solution is p.t/ D eT�1�t . Consequently

p.t/ D eT�1�t > 1 ) t � T � 1:

Thus the optimal control is

u�.t/ D

(
1 if 0 � t � T � 1;

0 if T � 1 � t � T:

This confirms our guess in Example 4.1.

Example 5.4 (Linear-Quadratic Regulator). Let’s see how we can use the maximum principle to solve for the LQ
problem. For simplicity we take n D m D 1. The dynamic is linear:(

Px.t/ D x.t/C u.t/

x.0/ D x0

and we want to minimize a quadratic cost functional

J.u/ D

Z T

0

x2.t/C u2.t/dt:

For this problem the values of the controls are not constrained, i.e. U D R. The Hamiltonian is

H.x; p; u/ D p � f .x; u/ � L.x; u/ D p � .x C u/ � .x2 C u2/:

Thus we need to solve for

H.x.t/; p.t/; u.t// D max
u2R
fp.t/ � .x.t/C u/ � .x2.t/C u2/g:

Again, since there is no terminal cost, p.T / D 0. The right hand side is a quadratic function of u, so setting Hu D 0
we get

Hu D �2uC p D 0 ) u.t/ D
p.t/

2
:

Thus to solve for the optimal control, we first need to solve for the canonical equations8<: Px.t/ D x.t/C
p.t/

2
;

Pp.t/ D 2x.t/ � p.t/;

(37)

with x.0/ D x0 and p.T / D 0. Write it in matrix form this is 
Px

Pp

!
D

 
1 1=2

2 �1

!
„ ƒ‚ …

M

 
x

p

!
:

The general solution is  
x.t/

p.t/

!
D etM

 
x0

p0

!
:

However, here we shall avoid calculating etM , since it is a very complicated matrix. Instead, we look for a feedback
control of the form

u.t/ D c.t/x.t/:
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We have
u.t/ D c.t/x.t/ D

p.t/

2
) c.t/ D

p.t/

2x.t/
:

Define d.t/ WD p.t/=x.t/ so that c.t/ D d.t/=2. We seek an ODE that d satisfies. Compute

Pd D
Pp

x
�
p Px

x2

and substitute Eq. (37) into above, we get

Pd D
2x � p

x
�
p

x2

�
x C

p

2

�
D 2 � d � d.1C

d

2
/ D 2 � 2d �

d2

2
:

Since p.T / D 0, the terminal condition is d.T / D 0. So far we obtained a (nonlinear) first-order ODE for d :8<: Pd D 2 � 2d �
1

2
d2 .0 � t � T /

d.T / D 0:

This is called the Riccati equation. If we can solve for this equation, then we will obtain the solution for the optimal
control as

u.t/ D
1

2
d.t/x.t/:

To solve for the Ricatti equation, a trick is to write

d.t/ D
2 Pb.t/

b.t/

for some function b.�/, and then compute

Pd D
2 Rb

b
�
2. Pb/2

b2
D
2 Rb

b
�
d2

2
:

The Riccati equation becomes
2 Pb

b
D Pd C

d2

2
D 2 � 2d D 2 � 2

2 Pb

b

and consequently (
Rb D b � 2 Pb; .0 � t � T /

Pb.T / D 0; b.T / D 1:

This is a seconder oder linear ODE, which we can solve by standard techniques. We can then set d D 2 Pb=b and derive
the solution of the Riccati equation.
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6 Dynamic Programming

Fix a terminal time T > 0 and consider the dynamics(
Px D f .t; x; u/

x.0/ D x0:

Suppose our objective is to minimize the objective function (Eq. (18))

J.u/ WD

Z T

0

L.t; x.t/; u.t//dt CK.T; x.T //:

The idea of dynamic programming is to consider the family of minimization problems associated with the cost func-
tionals

J.t; x; u/ D

Z T

t

L.s; x.s/; u.s//ds CK.x.T //

where t 2 Œ0; T / and x 2 Rn. J.t; x; u/ is the cost if we start from time t , with state x at time t , and use the control
u. We define the value function on Œ0; T � � Rn as

V.t; x/ WD inf
ujŒt;T �

J.t; x; u/: (38)

The notation ujŒt;T � means the restriction of u to the time interval Œt; T �. This value function is the optimal cost-to-go
from the point .t; x/. In some applications we are interested in finding the optimal control, but in other situations our
first goal is to obtain V.0; x0/, the optimal value at the starting point. Dynamic programming aims to solve for the
whole value function V.t; x/ for any t and x. It is clear that the value function must satisfy the boundary condition

V.T; x/ D K.x/ 8x 2 Rn:

In particular, if there is no terminal cost, then we should have V.T; x/ D 0 for all x 2 Rn. The principle of optimality
states that, for every .t; x/ 2 Œ0; T / � Rn and every �t 2 .0; T � t �, the value function must satisfy

V.t; x/ D inf
ujŒt;tC�t�

(Z tC�t

t

L.s; x.s/; u.s//ds C V.t C�t; x.t C�t//

)
(39)

where x.�/ on the right-hand side is the state trajectory corresponding to the control ujŒt;tC�t� and statisfying x.t/ D x.
Namely, the optimal cost at any time t and state x, should be the infimum of the combination of cost over an interval
�t and the optimal cost at tC�t . This equation gives us a practical guidance of finding the optimal value at the initial
position .0; x0/: we know the value at the end. We can then take a small step �t back and find the value there, for
which Eq. (39) is supposed to be relatively easy to solve. Having found V.T ��t; x.T ��t//, we can again take a
small step back, and solve for Eq. (39) again.

Since larger problem depends on smaller problems, the philosophy of dynamic programming is to obtain complete
solutions for all smaller problems and store them, so that we can make use of them to solve for the larger problem. In
solving the original problem, we solve all subproblems smaller than the original problem, so we get much more than
what we want to find.

We next justify Eq. (39) rigorously. Let V .t; x/ denote the right side of Eq. (39). By the definition of V.t; x/,
Eq. (38), for every � > 0 there exists a control u� on Œt; T � such that

J.t; x; u�/ � V.t; x/C �:
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Let x� be the corresponding trajectory. We have

J.t; x; u�/ D

Z tC�t

t

L.s; x�.s/; u�.s//ds C J.t C�t; x�.t C�t/; u�/

�

Z tC�t

t

L.s; x�.s/; u�.s//ds C V.t C�t; x�.t C�t// � V .t; x/:

Thus
V .t; x/ � J.t; x; u�/ � V.t; x/C �

for arbitrary �. This proves V.t; x/ � V .t; x/. On the other hand, since V.t; x/ is the optimal cost-to-go at time t and
state x, we should have

V.t; x/ �

Z tC�t

t

L.s; x.s/; u.s//ds C V.t C�t; x.t C�t//

for any control u on Œt; t C�t�. Take the infimum on the right side we get V.t; x/ � V .t; x/. This proves Eq. (39).

6.1 The Hamilton-Jacobi-Bellman Equation

Let’s re-write Eq. (39) in a way that is more convenient to work with for the continuous case. We first approximate the
term V.t C�t; x.t C�t// using Taylor expansion. Let g.t/ D V.t; x.t//, then

g0.t/ D
@V

@t
C
@V

@x

dx

dt

so that

V.t C�t; x.t C�t// D g.t C�t/ D g.t/C g0.t/�t C o.�t/

D V.t; x/C Vt .t; x/�t C f .t; x; u.t// � Vx.t; x/�t C o.�t/:
(40)

We also have Z tC�t

t

L.s; x.s/; u.s//ds D L.t; x; u.t//�t C o.�t/ (41)

Substituting Eq. (40) and Eq. (41) into Eq. (39) we obtain

V.t; x/ D inf
ujŒt;tC�t�

fL.t; x; u.t//�t C V.t; x/C Vt .t; x/�t C Vx.t; x/ � f .t; x; u.t//�t C o.�t/g :

Cancel V.t; x/ on both sides, divide by �t , and take �t ! 0, we obtain the Hamilton-Jacobi-Bellman (HJB)
equation

� Vt .t; x/ D inf
u2U
fL.t; x; u/C Vx.t; x/ � f .t; x; u/g : (42)

for all t 2 Œ0; T / and all x 2 Rn. This is a partial differential equation (PDE) of V . If we can solve this partial
differential equation, then we could know V , and knowledge of V may provide us with insights about the optimal
control.

It is easy to check that Eq. (42) is equivalent to

Vt .t; x/ D sup
u2U

f�Vx.t; x/ � f .t; x; u/ � L.t; x; u/g:

Recalling the definition of Hamiltonian H.t; x; u; p/ D p � f .t; x; u/ � L.t; x; u/, we see this is

Vt .t; x/ D sup
u2U

H.t; x; u;�Vx.t; x//: (43)
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If u� is optimal, and then the infimum in Eq. (42) becomes minimum, and we will have

�Vt .t; x
�/ D min

u2U
fL.t; x�; u/C Vx.t; x

�/ � f .t; x�; u/g

D L.t; x�; u�/C Vx.t; x
�/ � f .t; x�; u�/

(44)

where x� is the trajectory corresponding to u�. Eq. (43) becomes

Vt .t; x
�/ D max

u2U
H.t; x�; u;�Vx.t; x

�// D H.t; x�; u�;�Vx.t; x
�//;

so we arrived at a condition analogous to the maximum principle:

H.t; x�; u�;�Vx.t; x
�// D max

u2U
H.t; x�; u;�Vx.t; x

�//: (45)

So far what we derived (Eqs. (42), (43) and (45)) are necessary conditions for optimality. Indeed, defining V to be
the value function, we showed that it must satisfy the HJB equation. Assuming further that an optimal control exists,
we showed that it must maximize the Hamiltonian along the optimal trajectory. It turns out that these conditions are
also sufficient for optimality. Let bV W Œ0; T � � Rn ! R be a C 1 function with boundary condition bV .T; x/ D K.x/

that satisfies Eq. (42), and suppose there is a control Ou W Œ0; T � ! U and a corresponding trajectory Ox W Œ0; T � ! Rn

with initial condition Ox.0/ D x0 satisfy Eq. (45), i.e.

H.t; Ox; Ou;�bV x.t; Ox// D max
u2U

H.t; Ox; u;�bV x.t; Ox//;
then bV .t0; x0/ is the optimal cost and Ou is the optimal control. To see this, from the above equation we have

�bV t .t; Ox/ D L.t; Ox; Ou/C bV x.t; Ox/ � f .t; Ox; Ou/:
Moving the left side to the right, it is

0 D L.t; Ox; Ou/C
d

dt
bV .t; Ox/:

Integrating this equality with respect to t from 0 to T , we have

0 D

Z T

0

L.t; Ox; Ou/dt C bV .T; Ox.T // � bV .0; x0/
so that bV .0; x0/ D Z T

0

L.t; Ox; Ou/dt CK. Ox.T // D J.0; x0; Ou/: (46)

Let x be another trajectory with the same initial condition x.0/ D x0 corresponding to an arbitrary control. SincebV satisfies the HJB equation Eq. (42), we have

�bV t .t; x/ � L.t; x; u/C bV x.t; x/ � f .t; x; u/
or

0 � L.t; x; u/C
d

dt
bV .t; x/:

Integrating over Œ0; T � we have

0 �

Z T

0

L.t; x; u/dt C bV .T; x.T // � bV .0; x0/
or bV .0; x0/ � Z T

0

L.t; x; u/dt CK.x.T // D J.0; x0; u/: (47)
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Eq. (46) and Eq. (47) show that control Ou has the cost bV .0; x0/ while no other control u can produce a smaller cost.e
Thus bV is the optimal cost and Ou is the optimal control.

To further see the distinctions between the maximum principle and dynamic programming, assume for simplicity
that the system and cost is time-invariant (so we drop “t” in f , L and H ). The maximum principle is formulated in
terms of the canonical equations

Px� D Hp
ˇ̌
�
; Pp� D � Hxj�

and says that at each time t the value u�.t/ of the optimal control must maximize H.x�.t/; u; p�.t// with respect to
u:

u� D arg max
u2U

H.x�.t/; u; p�.t//:

This is an open-loop specification, because u�.t/ depends not only on the state x�.t/ but also on the costate p�.t/
which has to be computed from the adjoint differential equation. On the other hand, the HJB equation says that the
optimal control must satisfy

u� D arg max
u2U

H.x�.t/; u;�Vx.t; x
�.t//:

This is a closed-loop (feedback) specification. After we solved the value function V.t; x/ everywhere, u�.t/ is com-
pletely determined by the current state x�.t/.

The ability to generate an optimal control policy in the form of a state feedback law is an important feature of the
dynamic programming approach. Clearly, we cannot implement this feedback law unless we can first find the value
function by solving the HJB partial differential equation, and this is in general a very difficult task. Therefore, from the
computational point of view the maximum principle has an advantage in that it involves only ordinary and not partial
differential equations. The dynamic programming approach provides more information (including sufficiency), but in
reality, the maximum principle is often easier to use and allows one to solve many optimal control problems for which
the HJB equation is analytically intractable.

6.2 Applications of the HJB Equation

Example 6.1 (Rocket Car). In Example 4.12 we saw how the maximum principle can be applied to solve for the
rocket car problem (Example 4.4). Here let’s see how dynamic programming works. Recall the dynamic is

Px.t/ D

 
0 1

0 0

!
x.t/C

 
0

1

!
u.t/

for x.t/ D .x1.t/; x2.t//T and u 2 Œ�1; 1�. Note that

f .x; u/ D

 
0

x2

!
C

 
0

u

!
D

 
x2

u

!
and the cost functional is

J.u/ D

Z �

0

1dt D �

so L.x; u/ D 1. Let V.t; x/ be the value function. The HJB equation (Eq. (42)) for this problem is

� Vt .t; x/ D inf
u2Œ�1;1�

˚
1C Vx1

.t; x/x2 C Vx2
.t; x/u

	
: (48)

Note that this is a free-time, fixed-endpoint problem, for which the boundary condition takes the form V.t; 0/ D 0

for all t , and Eq. (48) is valid away from x D 0. The infimum on the right-hand side of Eq. (48) is achieved by setting

u D � sign.Vx2
.t; x// D

(
1 if Vx2

.t; x/ < 0

�1 if Vx2
.t; x/ > 0:
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Substituting it into Eq. (48), we arrive at a simplified HJB equation

�Vt .t; x/ D 1C Vx1
.t; x/x2 � jVx2

.t; x/j:

The optimal control is given by the feedback law

u� D � sign.Vx2
.t; x�.t///;

whose implementation of course hinges on our ability to solve for V .

Example 6.2 (General Linear Quadratic Regulator). In (finite horizon) Linear Quadratic regulator (LQR) problem,
the control system is a linear time-varying system(

Px D A.t/x C B.t/u;

x.0/ D x0

with x 2 Rn and u 2 Rm. The target set is S D fT g � Rn, so this is a fixed-time, free-endpoint problem. The cost
functional is

J.u/ D

Z T

0

�
xT .t/Q.t/x.t/C uT .t/R.t/u.t/

�
dt C xT .T /Mx.T /

where Q;R and M are symmetric and positive semidefinite matrices, and R is a symmetric and positive definite
matrix, so that it has an inverse. The HJB equation (Eq. (42)) for this problem is

� Vt .t; x/ D inf
u2Rm

˚
xTQ.t/x C uTR.t/uC Vx.t; x/ � .A.t/x C B.t/u/

	
(49)

with boundary condition
V.T; x/ D xTMx: (50)

The minimizer of the quadratic function in Eq. (49) is

u D �
1

2
R�1.t/BT .t/Vx.t; x/: (51)

Substituting Eq. (51) into Eq. (49), the HJB equation becomes

� Vt .t; x/ D x
TQ.t/x C Vx.t; x/

TA.t/x �
1

4
Vx.t; x/

TB.t/R�1.t/BT .t/Vx.t; x/: (52)

To obtain the optimal control, we need to solve for V . Let’s guess a form of V and check that it indeed works.
Inspired by the terminal condition Eq. (50), let’s guess that V has the form

V.t; x/ D xTP.t/x

for some symmetric matrix P.t/. Then Vx.t; x/ D 2P.t/x and Vt .t; x/ D xT PP .t/x. Plugging these two expressions
into Eq. (52), we obtain

�xT PP .t/x D xT
�
Q.t/C 2P .t/A.t/ � P .t/B.t/R�1.t/BT .t/P .t/

�
x

+

PP D Q.t/C 2P .t/A.t/ � P .t/B.t/R�1.t/BT .t/P .t/:

This is the matrix Riccati equation. If we can solve for this, then we can obtain the optimal control law

u�.t/ D �R�1.t/BT .t/P.t/x�.t/

in feedback form.
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