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Part I

Probability



1 Probability

We record here only a small portion of probability theory. Readers should consult Wasserman
2004, Ash 1999; Chung and AitSahlia 1974; Durrett 2010; Resnick 2014 or Shreve 2004 for a
complete study.

1.1 Random Variables

Given a probability space .�; �.�/;P/, a function X W �! R is called a random variable if

8A 2 B.R/; X�1.A/ D f! 2 � W X.!/ 2 Ag 2 �.�/:

For a random variable X , its cumulative distribution function (CDF) is the function FX W R !

Œ0; 1� such that
FX.x/ D PfX � xg:

The following theorem tells us that the cumulative distribution function completely determines
the distribution of a random variable.

Theorem 1.1. Let X have CDF F and let Y have CDF G. If F.x/ D G.x/ for all x then
P.X 2 A/ D P.Y 2 A/ for all (measurable) A.

1.2 Inequalities

Theorem 1.2 (Markov’s Inequality). LetX be a non-negative random variable and suppose E.X/ <

1. For any t > 0,

P.X > t/ �
E.X/

t

Proof. E.X/ D
R1
0
xf .x/dx D

R t
0
xf .x/dxC

R1
t
xf .x/dx �

R1
t
xf .x/dx � t

R1
t
f .x/dx D

tP.X > t/:

Theorem 1.3 (Chebyshev’s Inequality). Let � D E.X/ and �2 D V .X/. Then

P.jX � �j � t / �
�2

t2
and P.jZj � k/ �

1

k2

where Z D .X � �/=� . In particular, P.jZj > 2/ � 1=4 and P.jZj > 3/ � 1=9.

Proof. Use Markov’s inequality:

P.jX � �j � t / D P.jX � �j2 � t2/ �
E.X � �/2

t2
D
�2

t2
:

The second part follows by setting t D k� .
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Theorem 1.4 (Hoeffding’s Inequality). Let Y1; : : : ; Yn be independent observations such that E.Yi/ D

0 and ai � Y � bi . Let � > 0. Then for any t > 0,

P

 
nX
iD1

Yi � �

!
� e�t�

nY
iD1

et
2.bi�ai /

2

=8:

Let X1; : : : ; Xn � Bernoulli.p/. Then, for any � > 0,

P.j NXn � pj > �/ � 2e
�2n�2

where NXn D n�1
Pn
iD1Xn.

Theorem 1.5 (Cauchy-Schwarz inequality). If X and Y have finite variances then

EjXY j �
p

E.X2/E.Y 2/:

Theorem 1.6 (Jensen’s Inequality). If g is convex then

Eg.X/ � g.EX/:

If g is concave then
Eg.X/ � g.EX/:

Proof. Let L.x/ D aCbx be a line, tangent to g.x/ at the point .EX; g.EX//. Since g is convex,
g lies above the line L.x/, so g.x/ � L.x/ for all x. Thus

Eg.X/ � EL.X/ D E.aC bX/ D aC bE.X/ D L.E.X// D g.E.X//:

1.3 Convergence of Random Variables

There are several types of convergence in probability theory. See Fig. 1 for their relationship.

� A sequence of random variables X1; X2; : : : converges almost surely to X if

Pf! W Xn.!/! X.!/g D 1;

or using a short-hand notation

Pf lim
n!1

Xn D Xg D 1:

� converge in probability: Xn
P
�! X if for every � > 0,

P.jXn �X j > �/! 0

as n!1.
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Figure 1: Relationship among different types of convergence.

� converge in distribution: Xn X if

lim
n!1

Fn.t/ D F.t/

at all t for which F is continuous.

� converge in quadratic mean (converge in L2): Xn
qm
��! X if E.Xn �X/2 ! 0 as n!1.

Theorem 1.7 (Weak Law of Large Numbers). If X1; : : : ; Xn; ::: are iid, then NXn
P
�! �.

Proof. Assume � <1. Using Chebyshev’s inequality,

P.j NXn � �j > �/ �
V . NXn/

�2
D

�2

n�2

which tends to 0 as n!1.

Theorem 1.8 (Strong Law of Large Numbers). NXn
a.s.
�! � as n!1, i.e.

P
�

lim
n!1

NXn D �
�
D 1

Proof. More complicated.

Theorem 1.9 (Central Limit Theorem). Let X1; X2; : : : be iid with mean � and variance �2. Then

Zn D

p
n. NXn � �/

�
 Z

where Z � N.0; 1/.
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Part II
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2 Parametric Inference

A statistical model F is a set of distributions. A parametric model is a set F that can be parameter-
ized by a finite number of parameters. In general a parametric model takes the form

F D
n
f .x; �/ W � 2 ‚

o
where � is an unknown parameter or a vector of parameters that can take value in the parameter
space ‚. A statistical functional is any functional on F:

T W F! R:

Examples are mean �.F / D
R
xdF.x/, variance �2.F / D

R
.x � �/2dF.x/ D

R
x2dF.x/ ��R

xdF.x/
�2 and median m.F / D F �1.1=2/.

A point estimator of a parameter � (or a statistics) is some function of the data fX1; : : : ; Xng,
i.e. some Tn D g.X1; : : : ; Xn/. The distribution of Tn is called the sampling distribution, and the
standard deviation of Tn is called the standard error, denoted by se. The bias of an estimator is
defined as BT .�/ D E� ŒT � � � . The estimator is called unbiased if BT .�/ D 0, and consistent if

Tn
p
�! � as n!1:

The mean squared error of an estimator is defined as MSET .�/ D E�
�
.T � �/2

�
. It is shown in

Proposition 2.31 that the MSE can be written as

MSET .�/ D V�.T /C B
2
T .�/:

There is in general a bias-variance trade-off when we select estimators. If an estimator has
low variance, then it typically has high bias (think about the mean). Conversely, if an estimator
has low bias, then it may have high variance (think about perfect fitting). If BT .�/ ! 0 and
se D

p
V�.T / ! 0 as n ! 1 then MSET .�/ D E�

�
.T � �/2

�
! 0, i.e. Tn

qm
��! � , so that

in particular Tn
p
�! � , i.e. the estimator Tn is consistent. We see that consistency is generally a

weaker condition than unbiasedness.
A 1�˛ confidence interval for a parameter � is an intervalCn D .a; b/where a D a.X1; : : : ; Xn/

and b D b.X1; : : : ; Xn/ are functions of the data, and

P.� 2 Cn/ � 1 � ˛ for all � 2 ‚:

Definition 2.1. The empirical distribution function OFn is the CDF that puts mass 1=n at each data
point Xi , i.e.

OFn.x/ D

Pn
iD1 I.Xi � x/

n
:

Note that OFn is a function of X1; : : : ; Xn.
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We have the following theorems:

Theorem 2.2. At any fixed value for x:

� E. OFn.x// D F.x/;

� V . OFn.x// D
F.x/.1 � F.x//

n
! 0;

� OFn.x/
p
�! F.x/.

Theorem 2.3 (Glivenko-Cantelli Theorem). Let X1; : : : ; Xn � F . Then

k OFn.x/ � F.x/k1 D sup
x

j OFn.x/ � F.x/j ! 0

almost surely.

Definition 2.4. The plug-in estimator of � D T .F / is defined by

O�n D T . OFn/:

If T is linear in F , i.e. T .F / D
R
r.x/dF.x/ for some function r , then the plug-in estimator

is just .1=n/
Pn
iD1 r.Xi/. Sample mean is linear: O�n D T . OFn/ D .1=n/

Pn
iD1Xi . Variance is not:

O�2 D

Z
x2d OFn.x/ �

�Z
xd OFn.x/

�2
D
1

n

nX
iD1

X2
i �

 
1

n

nX
iD1

Xi

!2
D
1

n

nX
iD1

.Xi � NXn/
2:

2.1 Sufficient Statistic

We use X D .X1; : : : ; Xn/ to denote our sample. A statistic T W X ! T is a function mapping
the set of all possible sample realizations to the set of possible values that T can take on.

Definition 2.5. T is sufficient for � (or, more precisely, for the statistical model ff� W � 2 ‚g) if
and only if the conditional distribution of X given T D t does not depend on � for all t 2 T :

Example 2.6. Let X D .X1; : : : ; Xn/ with Xi
i:i:d
� Be.�/ for i D 1; : : : ; n and � 2 ‚ D .0; 1/.

We show that T D
Pn
iD1Xi is a sufficient statistic. We have

PfX1 D x1; : : : ; Xn D xnjT D tg D
P .fX1 D x1; : : : ; Xn D xng \ fT D tg/

PfT D tg
: (1)
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Note that T has binomial distribution bi.n; �/. When
Pn
iD1 xi ¤ t , the two events A D fX1 D

x1; : : : ; Xn D xng and B D fT D tg are disjoint, so that the probability P.A \ B/ D P.¿/ is 0.
If
Pn
iD1 xi D t , then A � B , so that the conditional probability becomes

PfX1 D x1; : : : ; Xn D xng

PfT D tg
D

Qn
iD1 PfXi D xig

PfT D tg

D

Qn
iD1 �

xi .1 � �/1�xi�
n

t

�
� t.1 � �/n�t

D
�
P
xi .1 � �/n�

P
xi�

n

t

�
� t.1 � �/n�t

D
1�
n

t

� :
Putting together we found

PfX1 D x1; : : : ; Xn D xnjT D tg D

8<:0 if
Pn
iD1 xi ¤ t�

n

t

��1 if
Pn
iD1 xi D t

Since the conditional distribution does not depend on � , we have established that T D
Pn
iD1Xi is

a sufficient statistic for � .

The definition of sufficient statistic provides a conceptual support for the notion of sufficiency.
But

1. for more elaborated models it is not easy to verify;

2. it is not constructive in the sense that it only allows to verify whether a statistics is sufficient,
but it does not provide a method to find a sufficient one.

To address the problems we have the following factorization theorem:

Theorem 2.7 (Neyman-Fisher Factorization Theorem). T .X/ is sufficient for � if and only if there
exist two non-negative functions g.t; �/ and h.x/ s.t.

f
X
�
.x/ D g.t; �/h.x/ 8x 2 X;8� 2 ‚

where t D T .x/.

Proof. (“only if” part for the discrete case) If T is sufficient, then

f
X
�
.x/ D P�fX D xg D P�fX D x; T D tg

D PfX D xjT D tg„ ƒ‚ …
Dh.x/

P�fT D tg„ ƒ‚ …
Dg.t;�/

:
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We can use the factorization theorem to establish the following:

� T D .
Pn
iD1Xi ;

Pn
iD1X

2
i / is a sufficient statistic for N.�; �2/,

� T D
Pn
iD1Xi is a sufficient statistic for Poisson distribution P.�/, and

� T D X.n/ is a sufficient statistic for uniform distribution U.0; �/:

Example 2.8 (Normal Distribution).

f
X
�
.x/ D

nY
iD1

�
1

p
2��

exp
�
�
1

2�2
.xi � �/

2

��
D

�
1

p
2��

�n
exp

(
�
1

2�2

nX
iD1

.xi � �/
2

)

D

�
1

p
2��

�n
exp

(
�
1

2�2

"
nX
iD1

x2i � 2�

nX
iD1

xi C �
2

#)
„ ƒ‚ …

Dg.t;�/Dg..
Pn
iD1 x

2
i
;
Pn
iD1 xi /;.�;�

2// with h.x/D1

Example 2.9 (Poisson Distribution).

f
X
�
.x/ D

nY
iD1

�xie��

xi Š
D
�
Pn
iD1 xie�n�Qn
iD1 xi Š

D

�
1Qn

iD1 xi Š

�
„ ƒ‚ …

Dh.x/

�
�
Pn
iD1 xie�n�

�
„ ƒ‚ …
g.t;�/Dg.

Pn
iD1 xi ;�/

:

Example 2.10 (Uniform Distribution).

f
X
�
.x/ D

nY
iD1

1

�
1.0;�/.xi/ D

1

�n

nY
iD1

1.0;�/.xi/:

Now
Qn
iD1 1.0;�/.xi/ D 1 if and only if all xi ’s are in .0; �/, or in other terms if and only if

0 < x.1/ < � � � < x.n/ < � , or 0 < x.1/ < x.n/ < � . Thus we can write

f
X
�
.x/ D 1.0;x.n//.x.1//„ ƒ‚ …

Dh.x/

1

�n
1.0;�/.x.n//:„ ƒ‚ …

Dg.t;�/Dg.x.n/;�/

There can be many sufficient statistic for a parameter. The “minimal” one is the one that induces
the coarsest partition of the set of sample realizations X.

Proposition 2.11. Assume T is sufficient for � and let l be an arbitrary function. If T D l.T �/

then T � is also sufficient.
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Proof. By the factorization theorem

f
X
�
.x/ D g.T .x/; �/h.x/ D g.l.T �.x//; �/h.x/ D g�.T �.x/; �/h.x/

where g� D g ı l .

Definition 2.12. A sufficient statistic T is said to be minimal if T is a function of any other suffi-
cient statistic T �, i.e. for every sufficient statistic T � there exists l� s.t. T D l�.T �/. Equivalently,
the partition induced by the minimal sufficient statistic is the one with the least number of elements.

The minimal sufficient statistic is unique up to one-to-one transformations. The following
theorem can be used to test minimal sufficiency:

Theorem 2.13 (Lehmann-Scheffé). If T is a statistic s.t.

f
X
�
.x/

f
X
�
.y/

with f X
�
.y/ ¤ 0

does not depend on � if and only if T .x/ D T .y/, then T is minimal sufficient.

It can be shown that

� T D .
Pn
iD1Xi ;

Pn
iD1X

2
i / is minimal sufficient for N.�; �2/. The one-to-one transforma-

tions T 0 D
�
NX;S2 D

Pn
iD1.Xi �

NX/2
�

is also minimal sufficient.

� T D .X.1/; X.n// is minimal sufficient for U.�; � C 1/.

2.2 Exponential Family

Definition 2.14. X � f� with � 2 ‚ � R. We denote the support of f� by SX . One-parameter
exponential family:

f�.x/ D a.�/g.x/ expfb.�/R.x/g

or equivalently
f�.x/ D g.x/ expfb.�/R.x/C c.�/g

Note that since ex > 0, the support of f�.x/ does not depend on � . Examples: Bernoulli,
normal, beta, Poisson, exponential, Dirichlet, gamma, chi-squared, geometric.

Proposition 2.15. If X belongs to the one-parameter exponential family, then

E� ŒR.X/� D �
c0.�/

b0.�/
; V� ŒR.X/� D �

1

b0.�/

d

d�

c0.�/

b0.�/
:
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Proof. Differentiate both sides of
R
SX
f�.x/dx D 1 and interchange derivative and integral:

@

@�

Z
SX

f�.x/dx D 0 H)

Z
SX

@

@�
f�.x/dx D 0

and then use f�.x/ D g.x/ expfb.�/R.x/Cc.�/g to expand the integral. One find b0.�/E� ŒR.X/�C
c0.�/ D 0.

An important property of exponential family is closure under random sampling: if X � f�

belongs to the exponential family, then the distribution of the samples X1; : : : ; Xn also belongs to
the exponential family:

f
X
�
.x/ D

NY
iD1

f�.xi/ D

nY
iD1

g.xi/ exp

(
b.�/

nX
iD1

R.xi/C nc.�/

)
:

Apply the Neyman-Fisher factorization theorem we immediately get that T D
Pn
iD1R.xi/ is a

sufficient statistic for � .
Generalizations to vector parameter:

f�.x/ D g.x/ exp

8<: kX
jD1

bj .�/Rj .x/C c.�/

9=;
where � D .�1; : : : ; �k/ 2 ‚ � Rk . The family is said to be minimal if the functions fbj .�/gjD1;:::;k
are linearly independent and the functions fRj .x/gjD1;:::;k are linearly independent. It is said to be
full-rank if it is minimal and ‚ includes a proper subset of Rk.

X � N.�; �2/ with � D .�; �2/ 2 ‚ D R � RC belongs to the 2-parameter exponential
family. X � N.�; �2/ with � 2 R belongs to the 2-parameter exponential family and is in minimal
form, but is not full rank, since the parameter space degenerates to R.

The multi-parameter exponential family is also closed under random sampling, and a general
result is

Proposition 2.16. If X belongs to the k-parameter exponential family, then

T D
�
R�1.X/; : : : ; R

�
k.X/

�
D

 
nX
iD1

R1.Xi/;

nX
iD1

R2.Xi/; : : : ;

nX
iD1

Rk.Xi/

!
is the minimal sufficient statistic for � D .�1; : : : ; �k/. Moreover, the distribution of T also belongs
to the k-parameter exponential family.

2.3 Fisher Information

We first consider the one dimensional case ‚ � R:
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Definition 2.17 (Score function). Let P D ff� W � 2 ‚g be a C.R. regular statistical model, where
‚ � R. The function

S�.x/ D
@

@�
logf�.x/ D

f 0
�
.x/

f�.x/

is termed the score function.

The score function measures how sensitive the log likelihood function is to its parameter � at a
given x. Replace x by X we get the random variable

S�.X/ D
@

@�
logf�.X/:

Since the data point X is generated by f� , we would expect that f�.X/ attains its maximum for
this particular � . This implies that we should expect @.logf�.X//=@� to be 0.

For example, we can calculate the score function for the exponential distribution Exp.�/.
Recall for the exponential distribution f�.x/ D �e��x. Thus logf�.x/ D log� � �x. The score
function is thus S�.X/ D 1

�
� X . The expectation of S�.X/ is 0, and the variance of S�.X/ is

equal to the variance of X , namely 1=�2.

Lemma 2.18. If P is C.R. regular, then we have

1. E� ŒS�.X/� D 0 8� 2 ‚

2. V� ŒS�.X/� D E� ŒS
2
� .X/� D E�

"�
@

@�
logf�.X/

�2#
Proof. Again, we use

R
f�.x/ D 1 H)

@
@�

R
f�.x/dx D 0 to obtain

0 D
@

@�

Z
f�.x/dx D

Z
@

@�
f�.x/dx D

Z
f 0
�
.x/

f�.x/
f�.x/dx D

Z
S�.x/f�.x/dx D E� ŒS�.X/�:

For a given � , if S�.X/ always concentrates near 0, then this implies that the distribution f� is
very flat, namely it is nearly a constant, so that the derivative is close to 0. Different values of X
appear with similar probabilities. If, on the other hand, S�.X/ varies a lot with different X , then
this means there are sharp increases or sharp decreases in f� , so that the distribution is uneven.
Thus the variance of S�.X/ can provide some information about the distribution f� .

Definition 2.19 (Fisher Information). Let P D ff� W � 2 ‚g be a C.R. regular statistical model.
The variance of the score function is called the Fisher information:

IX.�/ D V� ŒS�.X/�:

Additivity of Fisher information:
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Proposition 2.20. If X and Y are two independent random variables with C.R. regular distribu-
tions, then

I .X;Y /.�/ D IX.�/C I Y .�/:

Proof. We use f .X;Y /
�

.X; Y / D f X
�
.X/f Y

�
.Y / and logf1f2 D logf1C logf2, and the fact that if

X and Y are independent then f1.X/ and f2.Y / are independent for any two measurable functions
f1 and f2:

E�

"�
@

@�
logf .X;Y /

�
.X; Y /

�2#
D E�

"�
@

@�
logf X� .X/f

Y
� .Y /

�2#
D E�

"�
@

@�
logf X� .X/C

@

@�
logf Y� .Y /

�2#
D E�

"�
@

@�
logf X� .X/

�2#
C E�

"�
@

@�
logf Y� .Y /

�2#
C 2E�

�
@

@�
logf X� .X/

@

@�
logf Y� .Y /

�
D IX.�/C I Y .�/C 2E�

�
@

@�
logf X� .X/

�
E�

�
@

@�
logf Y� .Y /

�
D IX.�/C I Y .�/:

Corollary 2.21. The Fisher information of a random sample X D .X1; : : : ; Xn/ with Xi
i:i:d:
� f�

(C.R. regular) is
IX.�/ D nIX1.�/:

Further simplifications in the computation of the Fisher information:

Lemma 2.22. If the model is C.R. regular then

IX.�/ D �E�

�
@2

@�2
logf�.X/

�
Proof. First note

@2

@�2
logf�.x/ D

@

@�

�
f 0
�
.x/

f�.x/

�
D
f 00
�
.x/f�.x/ � .f

0
�
.x//2

f�.x/2

D �

�
f 0
�
.x/

f�.x/

�2
C
f 00
�
.x/

f�.x/
D �

�
@

@�
logf�.x/

�2
C
f 00
�
.x/

f�.x/
:

Take the expectation we get

E�

�
@2

@�2
logf�.X/

�
D �E�

"�
@

@�
logf�.X/

�2#
„ ƒ‚ …

DIX .�/

CE�

�
f 00
�
.X/

f�.X/

�
:„ ƒ‚ …

D0
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The last term is zero due to

E�

�
f 00
�
.X/

f�.X/

�
D

Z
f 00
�
.x/

f�.x/
f�.x/dx D

Z
f 00� .x/dx D

@2

@�2

Z
f�.x/dx„ ƒ‚ …
D1

D 0:

Example 2.23. As an example, we calculate the Fisher information for a sample X D .X1; : : : ; Xn/
whereXi

i:i:d:
� f�.x/ D �e

��x. The first derivative of log f�.x/ is 1=��x, so the second derivative
of logf�.x/ is

@2

@�2
logf�.x/ D

@

@�

�
1

�
� x

�
D �

1

�2
:

Thus we have

IX1.�/ D �E�

�
1

�2

�
D

1

�2
:

So the Fisher information of the sample is IX D n=�2.

The following result is very useful:

Theorem 2.24. (Assume every distribution involved is C.R. regular) Suppose T D T .X/ is a
statistic of a sample X D .X1; : : : ; Xn/. Then

IX.�/ � I T .�/ 8� 2 ‚

with equality holds if and only if T is sufficient.

The theorem provides great convenience, since if T is sufficient, then to calculate the Fisher
information of T we don’t have to work out the distribution of T . We can just compute IX1.�/
instead. We then have I T .�/ D IX.�/ D nIX1.�/.

2.4 Ancillarity and Completeness

2.4.1 Ancillarity

Definition 2.25 (Ancillary statistic). A statistic V D V.X1; : : : ; Xn/ is said to be ancillary for �
if the distribution of V does not depend on � .

For example, suppose our sample is X1; : : : ; Xn with Xi
i:i:d:
� N.�; 1/. Then T D X1 � X2 �

N.0; 2/ is ancillary.
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� We sayX belongs to a location family ifX � F.x��/where F is some known distribution.
If X is continuous then this is also equivalent to f X

�
.x/ D f .x � �/ for some known f .

Think about the normal distributions with different means. To construct a location family,
let Z � F and let X D Z C � . Then

FX� .x/ D PfX � xg D PfZ C � � xg D PfZ � x � �g D F.z � �/:

� Ancillary statistics for samples of X belonging to a location family could be

– T D Xi �Xj for i ¤ j .

– T D X.i/ �X.j / for i ¤ j .

� We sayX belongs to a scale family ifX � F.x
�
/ for some known F . Equivalently, f X

�
.x/ D

1
�
f .x

�
/ for some known f . To construct one, we can do X D �Z where Z � F is known.

Then
FX� .x/ D PfX � xg D Pf�Z � xg D PfZ �

x

�
g D F.

x

�
/:

Examples: X � N.0; �2/, which has pdf

f X
�2
.x/ D

1
p
2��

exp
�
�
1

2

�x
�

�2�
:

� Ancillary statistics for samples of X belonging to a scale family could be

– T D
�Pn

iD1Xi
�
=Xn.

– T D
�
X1
Xn
; : : : ; Xn�1

Xn

�
.

� We say that X belongs to a location-scale family if

X � F
�x � �

�

�
for F known and .�; �/ 2 R � RC. An example would be the normal distribution X �
N.�; �2/. To construct a location-scale family, we can do X D �Z C � with Z � F

known.

� Ancillary statistics for samples of X belonging to a location-scale family could be

– T D
�
X1�Xn
S

; : : : ; Xn�1�Xn
S

�
, where S2 D .1=n/

Pn
iD1.Xi �

NX/2 is the sample vari-
ance.
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2.4.2 Completeness

Completeness of T corresponds to requiring that there does not exist any function of T that can
lead to 1st order ancillarity, except the constant function. If T is rendered to a constant, it is of
course irrelevant of � and hence ancillary.

Definition 2.26. T is complete if

E� Œg.T /� does not depend on � H) it must be that g is a constant function (a.s.)

Or equivalently
E� Œg.T /� D 0 8� 2 ‚ H) Pfg.T / D 0g D 1:

We can show that T D
Pn
iD1Xi is complete for Bernoulli sample Xi � Be.�/, T D X.n/

is complete for uniform sample Xi � U.0; �/, and T D NX is complete for the normal sample
Xi � N.�; �

2/. For the k-parameter exponential family,

T D

 
nX
iD1

R1.Xi/;

nX
iD1

R2.Xi/; : : : ;

nX
iD1

Rk.Xi/

!
is complete.

Why we want completeness? We can view ancillarity as the opposite of sufficiency. However,
even if a statistic T is minimal sufficient, there may exist one-to-one transformation of T such
that ancillarity appears. An example is T D .X.1/; X.n// for the distribution Xi � U.�; � C 1/.
The transformation T � D .X.n/ �X.1/; .X.1/CX.n//=2/ is also minimal sufficient, but it contains
ancillary statistic X.n/ �X.1/.

Thus, we can view completeness as “removing ancillarity from sufficient statistic”. If T is
sufficient and complete, we should expect that it is independent from ancillary statistic.

Theorem 2.27 (Basu’s Theorem). If T is a sufficient and complete statistic for ff� W � 2 ‚g and
V is any ancillary statistic, then T and V are independent.

Proof. We prove for the discrete case. Since PfX D xjT D tg does not depend on � , and V is a
function of X, we have PfV 2 BjT D tg WD hB.t/ D EŒ1B.V /jT D t � does not depend on � . By
law of iterated expectation, the expected value of hB.T / is EŒ1B.V /� D PfV 2 Bg. Since T is
complete, the function hB is constant (a.s.) and is equal to PfV 2 Bg. In other words,

PfV 2 BjT D tg D PfV 2 Bg a.s.

An application of Basu’s theorem would be to prove NX and S2 are independent for the normal
sample Xi � N.�; �2/. For every fixed �2, NX is (minimal) sufficient and complete, while S2 is
ancillary (S2 D .1=n/

Pn
iD1.Xi �

NX/2 D .1=n/
Pn
iD1.Zi �

NZ/2 with Zi D Xi �� � N.0; �2/),
so that the two are independent (for �2 known or unknown).
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2.5 Estimation - Methods of Moments

Suppose the model is X � f� where � D .�1; : : : ; �k/ 2 ‚ � Rk, so we have k parameters to
estimate. The analytical formulas of the moments E� ŒXj � D

R
xjf� ; j D 1; 2; : : : are known and

depend on � D .�1; : : : ; �k/. The empirical moments are

mj D
1

n
.X

j
1 CX

j
2 C : : :CX

j
n / j D 1; 2; : : : :

The methods of moments equates the first k analytical moments with the corresponding empirical
ones, and then solve for �1; : : : ; �k .

2.6 Estimation - Maximum Likelihood

Properties of maximum likelihood estimation:

1. The MLE is consistent: b�n p
�! �

2. The MLE is equivariant: ifb�n is the MLE of � then g.b�n/ is the MLE of g.�/.

3. The MLE is asymptotically normal:

(a) se D
q

V .b�n/ �p1=In.�/ and .b�n � �/=se N.0; 1/.

(b) Let bse Dq1=In.b�n/, then .b�n � �/=bse N.0; 1/ (Note that In.�/ D nI.�/)

4. The MLE is asymptotically optimal or efficient: among all well-behaved estimators, the MLE
has the smallest variance, at least for large samples.

2.6.1 Proof of Asymptotic Normality

We prove the asymptotic normality for the MLE. Let `.�/ denote the log-likelihood. For MLEb�
we have `0.b�/ D 0. Use the first order Taylor polynomial to approximate `0.b�/ at the pointb� :

0 D `0.b�/ � `0.�/C .b� � �/`00.�/
so we have

p
n.b� � �/ � `0.�/=

p
n

�`00.�/=n
:

`0.�/ is n times the score function S�.X/ for the distribution X � f� . Recall EŒS�.X/� D 0 and
V ŒS�.X/� D I.�/. Hence the numerator

n�1=2
X
i

S�.Xi/ D
p
n � S�.Xi/ D

p
n.S�.Xi/ � 0/ W � N.0; I.�//
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by the central limit theorem. For the denominator, let Ai D �@2 logf�.Xi/=@�2. Then the de-
nominator is A and E.Ai/ D I.�/ for each i . Thus by the law of large numbers the denominator
converges to I.�/, the theoretical mean. We conclude by Slutsky’s theorem that

p
n.b� � �/ W

I.�/
� N

�
0;

1

I.�/

�
:

Recall bse Dq1=In.b�n/ Dq1=nI.b�n/, so we can rewrite the above as

b�n � �bse D
p
nI 1=2.b�n/.b�n � �/

D

hp
nI 1=2.�/.b�n � �/i

s
I.b�n/
I.�/

The first term tends to N.0; 1/. Assuming that I is continuous, we have I.b�n/ p
�! I.�/, so that the

second term tends to 1.

2.6.2 Delta Method

We can get the distribution of functions of parameters g.�/ in a similar fashion. We first show the
univariate case.

Theorem 2.28. If the sequence of variables fXng satisfies

p
nŒXn � �� N.0; �2/

then
p
nŒg.Xn/ � g.�/� N.0; �2 � Œg0.�/�2/

Proof. First order Taylor approximation at the point Xn:

g.Xn/ D g.�/C g
0. Q�/.Xn � �/

where Q� lies betweenXn and � . Note that sinceXn
P
�! � andXn < Q� < � , it must be that Q�

P
�! �

and since g0.�/ is continuous, applying the continuous mapping theorem yields g0. Q�/
P
�! g0.�/.

Rearranging the terms and multiplying by
p
n gives

p
nŒg.Xn/ � g.�/� D g

0. Q�/
p
nŒXn � ��

and the delta method follows.
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In the multivariate case, suppose
p
n.B�ˇ/ N.0;†/, and we want to derive the distribution

of h.ˇ/ for some function h. We again use the Taylor approximation at point B:

h.B/ � h.ˇ/Crh.ˇ/T � .B � ˇ/

+

p
n .h.B/ � h.ˇ// �

p
n � rh.ˇ/T � .B � ˇ/

The variance of the right hand side is

V .
p
n � rh.ˇ/T � .B � ˇ// D n � V .rh.ˇ/T � B/

D n � Œrh.ˇ/T � Cov.B/ � rh.ˇ/�

D n � Œrh.ˇ/T �†=n � rh.ˇ/�

D rh.ˇ/T �† � rh.ˇ/

where we have used the fact that Cov.B/ � †=n from
p
n.B � ˇ/  N.0;†/. Thus the

conclusion is that
p
n.h.B/ � h.ˇ// N.0;rh.ˇ/T �† � rh.ˇ//:

2.7 Methods for Evaluating Estimators

2.7.1 Mean Squared Error

Definition 2.29. Given an estimator T for a parameter � 2 ‚, the MSE is defined as

MSET .�/ D E�
�
.T � �/2

�
Definition 2.30. T is an unbiased estimator for � (g.�/) if

E� ŒT � D � 8� 2 ‚

�
E� ŒT � D g.�/ 8� 2 ‚

�
:

The quantity

BT .�/ D E�.T / � �

�
BT .�/ D E�.T / � g.�/

�
is termed bias.

Proposition 2.31. MSET .�/ D E�
�
.T � �/2

�
D V�.T /C B2T .�/.
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Proof.

E�
�
.T � �/2

�
D E�

�
.T � E�.T /C E�.T / � �/

2
�

D E�
�
.T � E�.T //

2
�„ ƒ‚ …

DV� .T /

CE�

264.E�.T / � �„ ƒ‚ …
DBT .�/

/2

375
C 2E� Œ.T � E�.T //.E�.T / � �/�

D V�.T /C BT .�/
2
C 2.E�.T / � �/E� ŒT � E�.T /�„ ƒ‚ …

D0

D V�.T /C BT .�/
2

If T is unbiased, then MSET .�/ D VT .�/ for any � 2 ‚. This implies that finding an
estimator that minimizes the MSE within the class of unbiased estimators, is equivalent to finding
T for which V�.T / is minimal.

2.7.2 Uniformly minimum variance unbiased estimators (UMVUE)

Definition 2.32. T � is the uniformly minimum variance unbiased estimator (UMVUE) for g.�/ if

� E�.T �/ D g.�/ 8� 2 ‚

� V�.T �/ � V�.T / 8� 2 ‚ and T unbiased.

Example 2.33. Let X D .X1; : : : ; Xn/ be i.i.d with Xi � f s.t. E.Xi/ D � and V .Xi/ D �2.
Clearly NX is an unbaised estimator for �. We want an unbiased estimator for �2. For the sample
variance

S2 D
1

n

nX
iD1

.Xi � NX/
2
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we have

E.S2/ D E

"
1

n

nX
iD1

X2
i

#
� 2

1

n
E

nX
iD1

Xi NX C EŒ NX2�

D
1

n

nX
iD1

EŒX2
i � � 2E

X1 C � � � CXn

n
� NX C EŒ NX2�

D
1

n

nX
iD1

EŒX2
i � � 2EŒ NX

2�C EŒ NX2�

D
1

n

nX
iD1

EŒX2
i � � EŒ NX2�

D
1

n

nX
iD1

EŒX2
i � �

�
V Œ NX�C EŒ NX�2

�
D
1

n
� n � .�2 C �2/ �

�2

n
� �2

D

�
1 �

1

n

�
�2 D

n � 1

n
�2:

Thus S2 is a biased estimator. The estimator

S2c D
n

n � 1
S2 D

1

n � 1

nX
iD1

.Xi � NX/
2

would be unbiased since EŒS2c � D
n
n�1

EŒS2� D �2. To compare the MSE of the two estimators,
we need to calculate the second moments according to Proposition 2.31. At this point we add
the assumption that Xi � N.�; �2/. Then the two would follow gamma distributions. It can
be shown that S2c �

�2

n�1
�2n�1, and so V .S2c / D

�4

.n�1/2
2.n � 1/ D 2�4

.n�1/
. The MSE for S2c

is then 2�4

.n�1/
. Similarly, S2 � �2

n
�2n�1 and V .S2/ D �4

n2
2.n � 1/. Thus the MSE for S2 is

V�2.S
2/C B2

S2
.�2/ D 2�4.n�1/

n2
C

�
�
�2

n

�2
D �4 2n�1

n2
. Since

2

n � 1
>
2n � 1

n2

the MSE for S2 is smaller than the MSE for S2c , even though S2 is biased.

Theorem 2.34 (Rao-Blackwell Theorem). Let U be an unbiased estimator for g.�/ and T a suffi-
cient statistic for � . Then

T � D EŒU jT �

is an unbiased estimator for g.�/ and

V�.T
�/ � V�.U / 8� 2 ‚

with the equality holding if and only if T � D U with probability 1.
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Proof. We need to show four things:

1. T � D EŒU jT � is a statistic, i.e. it does not depend on � .

2. T � is unbiased.

3. V�.T �/ � V�.U /.

4. V�.T �/ D V�.U / if and only if PfT � D U g D 1.

As for Item 1, since T is sufficient, XjT does not depend on � . Moreover U is a function of X, so
T � does not depend on � .

As for Item 2, by law of iterated expectation EŒT �� D EŒEŒU jT �� D EŒU � D g.�/.
As for Item 3, we compute V�.U /:

V�.U / D E�
�
.U � g.�//2

�
D E� Œ.U � T

�
C T � � g.�//2�

D E� Œ.U � T
�/2�C E� Œ.T

�
� g.�//2�

C 2E� Œ.U � T
�/.T � � g.�//�

D V�.T
�/C E� Œ.U � T

�/2�„ ƒ‚ …
�0

C0

from which we conclude V�.U / � V�.T �/.
As for Item 4, we showed previously that

V�.U / D V�.T
�/C E�

�
.U � T �/2

�
8� 2 ‚

and so E�
�
.U � T �/2

�
D 0 if and only if PfU D T �g D 1.

Theorem 2.35. T � is UMVUE for g.�/ if and only if Cov�.T �; U / D 08� where U is any
unbiased estimator of 0 (i.e.E� ŒU � D 08� ).

Theorem 2.36 (Lehmann-Scheffé Theorem). Let T be a sufficient and complete statistic for � and
T � D h.T / be any unbiased estimator for g.�/. Then T � is UMVUE for g.�/ and essentially
unique.

Proof. 1. First we show that T � is unique. Let QT be another estimator which is

(a) a function of T : QT D Qh.T /

(b) unbiased: E�. QT / D g.�/.

Then we have E�. QT � T �/ D 0. Moreover, since both T � and QT is a function of T , their
difference is also a function of T . By completeness of T we have Pf QT D T �g D 1.
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2. Let U be any unbiased estimator of g.�/. Then by the Rao-Balckwell Theorem EŒU jT � is
also unbiased and V�.EŒU jT �/ � V�.U /8� . Since the function of T that is unbiased is
unique, we have T � D EŒU jT � a.s. and V�.T �/ � V�.U /. Since U is arbitrary V�.T �/ is
minimal and T � is UMVUE.

We next show some applications of the Rao-Blackwell theorem and the Lehmann-Scheffé The-
orem.

Example 2.37. Let X D .X1; : : : ; Xn/ be i.i.d with Xi � N.�; �2/. We distinguish 3 cases:

1. �2 known
T D

Pn
iD1Xi is sufficient and complete, and NX D h.T / D .1=n/T D .1=n/

Pn
iD1Xi is

unbiased for �. Hence by the Lehmann-Scheffé Theorem NX is UMVUE for �.

2. � known
T D

Pn
iD1.Xi � �/

2 is sufficient and complete. We have

EŒT � D
nX
iD1

EŒXi � ��
2
D n�2

and thus T � D .1=n/T is a function of T that is unbiased, and so is UMVUE by the
Lehmann-Scheffé Theorem.

3. Both � and �2 unknown
We know that T D .

Pn
iD1Xi ;

Pn
iD1.Xi � �/

2/ is sufficient and complete for .�; �2/. The
same is true for the one-to-one transformation T � D . NX;S2c /. It is unbiased, and so by the
Lehmann-Scheffé Theorem it is UMVUE for .�; �2/.

Example 2.38. Let X D .X1; : : : ; Xn/ be i.i.d with Xi � Be.�/.

1. UMVUE for � : We know that T D
P
Xi is sufficient and complete. Then

T � D h.T / D
1

n
T D NX

is a function of T and is unbiased, and so T � is UMVUE for � .

2. UMVUE for �.1� �/: Suppose we wan want to know the UMVUE for g.�/ D �.1� �/ D
V .Xi/. We might first want to try the MLE estimate T D3�.1 � �/ D O�.1� O�/ D NX.1� NX/.
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Let’s check whether the MLE is unbiased:

E� Œ NX.1 � NX/� D E�. NX � NX
2/

D E�. NX/ � E�. NX
2/

D � � ŒV�. NX/C E. NX/2�

D � �
�.1 � �/

n
� �2

D
n � 1

n
�.1 � �/:

Hence the MLE is biased but it is easy to correct the bias: for T � D h.T / D n
n�1

T D
n
n�1
NX.1 � NX/ we have E�.T �/ D �.1 � �/. T � is a function of the complete and sufficient

statistic T that is unbiased, so we conclude that T � is UMVUE for �.1 � �/.

Example 2.39. Let X D .X1; : : : ; Xn/ be i.i.d. with Xi � Po.�/. Recall that T D
Pn
iD1Xi is a

sufficient and complete statistic for �.

1. The UMVUE for � is clearly T � D NX .

2. Find the UMVUE for

gk.�/ D PfXi D kg D
e���k

kŠ
:

To use the Rao-Blackwell theorem we need to first come up with an unbiased estimator U
for gk.�/ and then conditioning on T . 1k.X1/ would be such an estimator:

EŒ1k.X1/� D PfX1 D kg D
e���k

kŠ
:

Then T � D EŒ1k.X1/jT � would be the UMVUE for gk.�/. Let’s compute it:

T � D EŒ1k.X1/jT �

D PfX1 D kjT g

D
PfX1 D k; T D tg

PfT D tg

D

8<:0 t < k

.�/ t � k
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where

.�/ D
PfX1 D k;

Pn
iD2Xi D t � kg

Pf
Pn
iD1Xi D tg

D
PfX1 D kgPf

Pn
iD2Xi D t � kg

Pf
Pn
iD1Xi D tg

D
e���k

kŠ
�
e�.n�1/�..n � 1/�/t�k

.t � k/Š

�
e�n�.n�/t

t Š

D
t Š

kŠ.t � k/Š
�
.n � 1/t�k

nt

D

 
t

k

!�
1

n

�k �
n � 1

n

�t�k
:

Hence the UMVUE for gk.�/ is

T � D

8<:
�
T

k

� �
1
n

�k �n�1
n

�t�k
k D 0; : : : ; T

0 otherwise.

In particular, if k D 0, then the UMVUE for g0.�/ D e�� D PfXi D 0g would be

T � D

�
1 �

1

n

�T
:

Example 2.40. Let X D .X1; : : : ; Xn/ be i.i.d. with Xi � U.0; �/. We know that T D X.n/ is
sufficient and complete for � . The CDF of T is given by

F T� .t/ D ŒF
X.t/�n D

�
t

�

�n
;

so the PDF of T is

f T� .t/ D n

�
t

�

�n�1
1

�
1.0;�/.t/:

The expectation of T is thus

E.T / D

Z �

0

tf T� .t/dt D
n

�n

Z �

0

tndt

D
n

�n
tnC1

nC 1

ˇ̌̌̌�
0

D
n

�n
�nC1

nC 1
D

n

nC 1
�:

Hence T D X.n/ is biased but for T � D ..nC 1/=n/T we have

E�.T
�/ D �

and so T � is UMVUE.
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2.8 Cramér-Rao Lower Bound

Theorem 2.41 (Cramér-Rao Lower Bound). X � f� where P D ff� W � 2 ‚g be a C.R. regular
model. Let T D T .x/ be an estimator for � . Assume V�.T / <1 and

@

@�

Z
T .x/f�.x/dx D

Z
T .x/

@

@�
f�.x/dx 8� 2 ‚:

Then one has

V�.T / �

�
@

@�
E� ŒT �

�2�
IX.�/:

Proof. We compute
�
@
@�

E� ŒT �
�2

. By definition we have

E� ŒT � D

Z
T .x/f�.x/dx:

Take derivatives on both sides w.r.t. � :

@

@�
E� ŒT � D

Z
T .x/

@

@�
f�.x/dx (by assumption)

D

Z
T .x/

@
@�
f�.x/
f�.x/„ ƒ‚ …
DS� .x/

f�.x/dx

D

Z
T .x/S�.x/f�.x/dx

D E� ŒT .X/S�.X/� :

D Cov ŒT .X/S�.X/� :

Recall the Cauchy-Schwarz inequality

Cov2.X; Y / � V .X/V .Y /;

so that �
@

@�
E�.T /

�2
D Cov2.T; S�/ � V�.T /V�.S�/:

Rearranging we get the desired result.

Corollary 2.42. If T is also an unbiased estimator of g.�/, then the inequality becomes

V�.T / �

�
@

@�
g.�/

�2�
IX.�/:

In the special case g.�/ D � , the bound is

V�.T / � 1

�
IX.�/:
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Example 2.43. The theorem does not hold for non C.R. regular models. For example, consider
X D .X1; : : : ; Xn/ with Xi

i:i:d:
� U.0; �/. We know from Example 2.40 that T � D nC1

n
X.n/ is

UMVUE for � . From the PDF of X.n/

f
X.n/
�
D
nyn�1

�n
1.0;�/.y/

one can calculate the variance of T �, which turns out to be �2 1
.nC2/n

. The Fisher information for

the sample X is IX.�/ D n=�2, so that V�.T �/ < 1=IX.�/ in this case.

A natural question is when the inequality becomes equality. The following result provides a
characterization in terms of the score function.

Corollary 2.44. The C.R. inequality becomes an equality if and only if the score function is linear
in T :

S�.x/ D r.�/ŒT .x/ � g.�/�

for some function r.�/ ¤ 0 and g.�/ D E� ŒT .X/�.

Proof. This stems from the fact that the Cauchy-Schwarz inequality

Cov2.X; Y / � V .X/V .Y /

becomes an equality if and only if there is a linear relationship between X and Y .

If the variance an estimator attains the C.R. lower bound lCR, then we say that the estimator is
efficient.

Definition 2.45. Given two unbiased estimator for g.�/, say T1 and T2 with V�.T1/ < 1 and
V�.T2/ <1, T1 is more efficient that T2 if

V�.T1/ < V�.T2/ 8� 2 ‚:

An estimator is termed efficient if

V�.T / D lCR 8� 2 ‚:

It is said to be asymptotically efficient if

lim
n!1

lCR

V�.T /
D 1 8� 2 ‚:

If an estimator T attains the C.R. lower bound (i.e. is efficient), then it is UMVUE. The
converse is not true: the variance of an UMVUE estimator may not be able to reach the C.R. lower
bound. One can prove that an efficient estimator exists essentially only if the model belongs to
the exponential family and the goal is to estimate g.�/ D � c

0.�/

b0.�/
(or a linear transformation), the

expected value of T D
P
R.Xi/.
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Example 2.46. Let X D .X1; : : : ; Xn/ be an i.i.d. sample with Xi � f� belonging to the expo-
nential family:

f�.xi/ D g.xi/ expfb.�/R.xi/C c.�/g:

Let’s compute the score function of X:

@

@�
logf�.x/ D

@

@�

"
b.�/

nX
iD1

R.xi/C nc.�/C

nX
iD1

logg.xi/

#
D b0.�/

nX
iD1

R.xi/C nc
0.�/

D nb0.�/

"
1

n

nX
iD1

R.xi/ �

�
�
c0.�/

b0.�/

�#
:

Now recall EŒR.Xi/� D �c0.�/=b0.�/, so that

E

"
1

n

nX
iD1

R.xi/

#
D �

c0.�/

b0.�/
:

We apply Corollary 2.44 to conclude that T D 1
n

Pn
iD1R.xi/ is the efficient estimator for�c0.�/=b0.�/.

Example 2.47. By computing the score function of the samples, we can show that

� For Xi � Po.�/, T D NX is an efficient estimator for �.

� For Xi � B.�/, T D NX is an efficient estimator for � .

� For Xi � N.�; �2/, Sc is the UMVUE for �2, but it is not efficient: eff.S2c / D
n�1
n
< 1.

However, it is asymptotically efficient.

2.9 Hypothesis Testing

� In parametric tests, the hypotheses split the parameter space ‚ into two non-overlapping
sets:

‚ D ‚0 [‚1 ‚0 \‚1 D ¿:

� The test splits the set X of all observations into two subsets R (critical region) and A

(acceptance region), such that X D R [A and R \A D ¿. The rule is

X 2 R ) reject H0

X 2 A ) accept H0

31



Typically, the rejection region is defined as

R D fx 2 X W T .x/ > cg

where T is a test statistic and c is a critical value.

� Type I error: X 2 R when H0 is true.

� Type II error: X 2 A when H0 is false.

Definition 2.48. The power function of a test with critical region R is

Q.�/ D P�fX 2 Rg:

When � 2 ‚0, the value of the power function Q.�/ is the probability of making type I error.
When � 2 ‚1, namely H0 is false, the value of the power function is equal to the probability that
we reject H0, which is also equal to one minus the probability of making type II error. We want
the probability of making type II error to be small, so we want Q.�/ to be large when � 2 ‚1.

The size of the test is defined to be ˛ D sup�2‚0Q.�/, which is the maximum probability
of making type I error. For a given size ˛ test, we want to find the test with highest Q.�/ for
all � 2 ‚1. Such a test, if it exits, is called most powerful. We omit the investigation about the
existence of most powerful tests. Instead, we give several examples of tests.

2.9.1 Wald Test

Let � be a scalar,b� D b�.X1; : : : ; Xn/ be an estimate of � , and bse be the estimated standard error
ofb� .

Definition 2.49 (Wald Test). Consider the testing

H0 W � D �0 versus H1 W � ¤ �0:

Assume thatb� is asymptotically normal:

W D
.b� � �0/bse  N.0; 1/:

The size ˛ Wald test is: reject H0 when jW j > z˛=2.

2.9.2 Pearson’s �2 test

Pearson’s �2 test is used for multinomial data. Recall that if X D .X1; : : : ; Xk/ has a multinomial
.n; p/ distribution, then the MLE of p is bp D .bp1; : : : ;bpk/ D .X1=n; : : : ; Xk=n/. Let p0 D
.p01; : : : ; p

0
k
/ be some fixed vector and suppose we want to test

H0 W p D p
0 v.s. H1 W p ¤ p0:
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Definition 2.50. Pearson’s �2 statistic is

T .X1; : : : ; Xk/ D

kX
jD1

.Xj � n � p
0
j /
2

n � p0j
D

kX
jD1

.Xj �Ej /
2

Ej

where Ej D E.Xj / D n � p0j is the expected value of Xj under H0.

Under H0, T  �2
k�1

. The test: reject H0 if T > �2
k�1

. The p-value is P.�2
k�1

> t/ where t
is the observed value of the test statistic.

2.9.3 Permutation Test

The permutation test is a non-parametric method for testing whether two distributions are the same.
Suppose X1; : : : ; Xm � FX and Y1; : : : ; Yn � FY are two independent samples. The test is

H0 W FX D FY versus H1 W FX ¤ FY :

Let T .x1; : : : ; xm; y1; : : : ; yn/ be some test statistic, for example T .X1; : : : ; Xm; Y1; : : : ; Yn/ D
j NXm� NYnj. LetN D mCn and consider forming allNŠ permutations of the data fX1; : : : ; Xm; Y1; : : : ; Yng.
For each permutation, compute the test statistic T , and denote these values by fT1; : : : ; TNŠg. Un-
der the null hypothesis, each of these values is equally likely. The distribution P0 that puts mass
1=N Š on each Tj is called the permutation distribution of T . Let tobs be the observed value of the
test statistic. Assuming we reject when T is large, the p-value is

P0.T > tobs/ D
1

N Š

NŠX
jD1

I.Tj > tobs/:

Usually it is not practical to evaluate all NŠ permutations. We can approximate the p-value by
sampling randomly from the set of permutations.

2.9.4 The Likelihood Ratio Test

Definition 2.51. Consider the testing H0 W � 2 ‚0 versus H1 W � … ‚0. The likelihood ratio
statistic is

� D 2 log
�

sup�2‚ L.�/

sup�2‚0 L.�/

�
D 2 log

 
L.b�/
L.b�0/

!
:

If the null hypothesis is false, then the numerator (sup�2‚ L.�/) will be larger than the denom-
inator (sup�2‚0 L.�/), so that the statistic will be large. Suppose

‚0 D
˚
� W .�1; : : : ; �q; �qC1; : : : ; �r/ D .�1; : : : ; �q; �

0
qC1; : : : ; �

0
r /
	
;

i.e. the set of points where some coordinates of � are fixed. Then under H0

�.X1; : : : ; Xn/ �2r�q:

The p-value for the test is P.�2r�q > �/.
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3 The Bootstrap

Bootstrap is a method for estimating standard errors and computing confidence intervals. We let
Tn D g.X1; : : : ; Xn/ be a statistic. We want to know V.Tn/, the variance of Tn. If T .F / D
F �1.1=2/ so that Tn D T . OFn/ is the median of the data, then what is the variance of Tn? As
another example, if T .F / D

R
.x ��/3dF.x/=�3 is the skewness of the distribution, then what is

the variance of Tn D T . OFn/? There may not exist a formula, or they can be very complicated.
Given our data points fx1; : : : ; xng, we can only calculate one value of Tn. But if we want

to know something about the distribution of Tn, like the variance, then we’d better have multiple
values of Tn at our hands. How can we do that? Well, just re-calculate Tn using our data points!
Draw with replacement x�1 ; : : : ; x

�
n from fx1; : : : ; xng, calculate T �n D g.x�1 ; : : : ; x

�
n/ and boo we

get another T �n . Continue doing this way and we get many T �n s. Now we are able to calculate the
variance. There are three ways to construct a bootstrap confidence interval:

� The normal interval: Tn ˙ z˛=2bseboot , where bseboot D pvboot is the bootstrap estimate
of the standard error. This interval is not accurate unless the distribution of Tn is close to
Normal. For ˛ D 0:05 this is approximately1

(th.hat - 2*se, th.hat + 2*se)

� The pivotal interval: Cn D .2 O�n� O��1�˛=2; 2 O�n� O��˛=2/, where O��ˇ is the ˇ quantile of our
bootstrap arrays. For ˛ D 0:05 this is

(2*th.hat-quantile(Tboot, .975), 2*th.hat-quantile(Tboot, .025))

� The percentile interval: Cn D . O��˛=2; O��1�˛=2/. For ˛ D 0:05 this is

(quantile(Tboot, .025),quantile(Tboot, .975))

Q: Why sometimes we can calculate the variance of Tn analytically?
A: We suppose our dataset fX1; : : : ; Xng is generated under some distribution F . We never

know F . Now, we want to calculate some statistics Tn D g.X1; : : : ; Xn/ and know its distribution.
To be less ambitious, we may want to know the mean (first moment) or variance (second moment)
or confidence intervals about Tn, which all give some partial information about the distribution of
Tn. Tn is a function of our data fX1; : : : ; Xng, and as we never know the distribution F of our data,
we never know the true distribution of Tn.

1th.hat denotes the statistic (or estimator) calculated from our data. Tboot denotes the array of bootstrap repli-
cates of th.hat. se is bootstrap standard error.
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So, what should I do if I want to calculate the variance of Tn? Say Tn D .
Pn
iD1Xn/=n WD

NXn

is the average of the data, and I want to calculate its variance. If the variance of Tn is too large then
the value of Tn may be less trustable; if the variance of Tn is very small then I can be more confident
that my Tn is close to the true first moment of the distribution F . Having said the motivation, I
can’t proceed unless I have a distribution of the data at hands. In particular, instead of working
with the unknown F , we work with OFn which closely approximates F :

OFn.x/ D

Pn
iD1 I.Xi � x/

n
;

i.e. we give every data point equal weight. If X is a random variable that has distribution OFn,
then P.X D Xi/ D 1=n for each i D 1; : : : ; n. It is a discrete distribution that takes values from
fX1; : : : ; Xng. We completely know the distribution OFn. For example:

1. The mean of OFn is
Z
xdF.x/ D

X1 C � � � CXn

n
WD NXn

2. The variance of OFn is
Z
.x � NXn/

2dF.x/ D

Pn
iD1.Xi �

NXn/
2

n

(The integrals are Riemann-Stieltjes integrals)
Note that OFn and F are different. It is important to realize that it is not OFn that generates the

data, but it is F . OFn does not generate our data fX1; : : : ; Xng. Drawing n data points from OFn is
equivalent to drawing n points with replacement at random from the pool fX1; : : : ; Xng. So I draw
once and I get fX�1 ; : : : ; X

�
n g, which may be slightly different than fX1; : : : ; Xng.

The statistics now is T �n D g.X
�
1 ; : : : ; X

�
n /. We approximate everything we want to know about

Tn by distribution of T �n . In essence, we are replacing F by OFn and redo everything: generate the
data, calculate the statistics, calculate the distribution of the statistics etc.

F (unknown)
generated
�������! fX1; : : : ; Xng �! Tn D g.X1; : : : ; Xn/ (dist. unknown)

OFn (known)
generated
�������! fX�1 ; : : : ; X

�
n g �! T �n D g.X

�
1 ; : : : ; X

�
n / (dist. known or unknown)

I can calculate the variance of T �n now. Recall T �n D .X�1 C � � � C X
�
n /=n, where each X�i is

generated according to the distribution OFn. Thus V.T �n / D V.X
�
1 /C� � �CV.X

�
n /=n

2 D V. OFn/=n.
What is the variance of OFn? We just showed that it is .

Pn
iD1.Xi �

NXn/
2/=n. Thus in this case, we

have directly worked out the variance, which is

V .T �n / D

Pn
iD1.Xi �

NXn/
2

n2
:
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Note that here we are treating each data point X�i as a random variable that has distribution
OFn. To recap, the statistics T �n is very simple, basically just the sum of those variables whose

distribution is completely transparent to us. The distribution of T �n is thus not hard to calculate.
Note that the variance of T �n in this case does not depend on the bootstrap data fX�1 ; : : : ; X

�
n g. It

just depends on the distribution OFn.
But what about this: suppose Tn is the median of our data fX1; : : : ; Xng. What is the variance

of Tn? We generate data once (or simulate) according to OFn, get fX�1 ; : : : ; X
�
n g, and then get

T �n D medianfX�1 ; : : : ; X
�
n g. What is the variance of T �n ? I don’t know. Even if I know each data

point has distribution OFn, I do not have a clear formula for T �n , so it is not obvious how should I
calculate the variance as in the previous case. So I need to re-sample again, get another T �n;1; re-
sample again, get another T �n;2,...until I simulated T �n for B times, then I can calculate the variance
by

Vboot.T
�
n / D

1

B

BX
bD1

 
T �n;b �

1

B

BX
rD1

T �n;r

!2
:

Summary Our data at hands fX1; : : : ; Xng is generated according to an unknown distribution
F . In particular, we do not know the mean and variance of F . A statistics Tn is some function of
the data, which is a random variable. Given a dataset we get a concrete real number for Tn. Given
another dataset we get another value for Tn, and so on. Since we do not know F , we do not know
the distribution of Tn. To solve this problem, we substitute F by OFn, hoping that the two do not
have a large difference. Then we can try to derive the distribution of Tn under OFn analytically.
Recall that a statistics Tn is some function of the data, so the first necessary step is to assume
the data is generated according to OFn. This corresponds to bootstrap just once. Note that we are
still in an abstract and theoretical setting yet, and so we still see the bootstrap data as random
variables, not as a concrete numerical output of our computer programs. If Tn is simple enough,
for example some simple combinations of data points, then we may derive, say, the variance of Tn
easily. Since the data is generated according to OFn, which in turn is related to fX1; : : : ; Xng, the
analytical expression for the approximated variance of Tn ultimately depends on fX1; : : : ; Xng.

However, most of the time we do bootstrap exactly because Tn is not some simple linear com-
binations of the data points, so it is not obvious how to calculate the variance of Tn, even if we
already assumed a known distribution of the data points, namely OFn. We thus re-sample the data
again and again and calculate many many values of Tn, to get a sample of Tn, and use the sample
variance to approximate the true variance of Tn.

Do not worry about the first case: its purpose is to give us the motivation as to why we need to
re-sample the data many times and calculate Tn many times. It says that only in rare cases could
we not have to do the actual simulation, but most of the times we do. We can still do the simulation
even if we are estimating the variance of the mean statistics. We don’t have to, but there is nothing
wrong in doing that.
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Part III

Statistical Models and Methods



4 EM Algorithm

4.1 Foundations

In order to understand the EM algorithm, we need to be familiar with some basic concepts:

1. Conditional probability:

P.AjB/ D
P.AB/

P.B/
and P.BjA/ D

P.AB/

P.A/
:

Substitute P.AB/ D P.BjA/P.A/ into the first equation we get the Bayes’ rule

P.AjB/ D
P.BjA/P.A/

P.B/
:

2. Marginal distribution: Let Z � B.p/, i.e. Z D 1 with probability p and Z D 0 with
probability 1 � p. Suppose Y has density f1 if Z D 1 and it has density f2 if Z D 0. This
is like a coin toss. If we get a head (Z D 1) we draw a sample from the density f1, and if
we get a tail (Z D 0) we draw a sample from the density f2. We draw many samples this
way, until we get our data fy1; : : : ; yng. What is the distribution of the random variable Y
that generated the data? The distribution of Y given Z is

f .yjZ/ D f
ŒZD1�
1 .y/ � f

ŒZD0�
2 .y/:

The expression ŒCondition� equals 1 if the Condition is true, and 0 is the Condition is false.
So f .yjZ D 1/ D f1.y/, and f .yjZ D 0/ D f2.y/. This is also an interpretation of using
coin toss to determine which density to draw.

The distribution of Z is clear: the PDF of Z is: p.1/ D p and p.0/ D 1 � p. Now, the
distribution of Y is

f .y/ D

Z
f .yjz/p.z/dz D p � f1.y/C .1 � p/ � f2.y/:

4.2 Separate Mixture of Normal Distributions

Suppose I give you the following 50 data points:

array([ 3.82, 98.43, 100.76 , 3.66, 100.48 , 98.27, 3.65, 100.23 ,
98.9 , 101.15 , 3.4 , 101.32 , 101.15 , 101.76 , 99.26 , 100.2 ,
99.14, 100.56 , 100.24 , 3.24, 101.55 , 99.79 , 99.91, 99.35 ,
3.8 , 100.61 , 2.44, 2.56, 3.08, 3.57, 3.89, 99.84 ,

100.13 , 2.75, 98.03, 99.7 , 98.78 , 98.74, 101.55 , 100.19 ,
1.27, 101.21 , 98.84, 1.96, 100.71 , 2.67, 99.2 , 100.28 ,

101.35 , 97.46])
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and I tell you that the each data point is draw from one of the two normal densities f .y; �1/ and
f .y; �2/ (for simplicity we fix both variances to be 1, and focus on the means). Can you tell me
�1 and �2? Looking at the data, it seems that some are around 3, while others are around 100. So
�1 D 3 and �2 D 100 is not a bad guess. What’s more, we can count the total number of values
that are relatively small (or close to 3) and divide by 50, to get the probability (i.e.P.Z D 1/) that
the first density is chosen.

But we need a general procedure for determine the parameters, instead of looking and guessing
every time. For example, if the �1 and �2 are close, then it is hard to tell which is which:

array ([6.1 , 5.02, 4.51, 4.4 , 3.46, 5.52, 4.44, 4.84, 5.45, 4.53, 1.78,
4.77, 4.83, 5.17, 4.41, 2.87, 5.72, 2.61, 7.31, 4.84, 4.1 , 3.67,
5.7 , 2.34, 3.39, 2.48, 5.26, 4.56, 4.91, 0.51, 5.17, 3.22, 3.97,
4.49, 3.5 , 5.79, 2.84, 5.1 , 3.85, 4.84, 3.97, 4.41, 5.58, 5.49,
4.83, 5.36, 5.21, 5.88, 2.91, 5.97])

(The above data is generated by f .y; 3/ and f .y; 5/) In all cases, we want to separate the data
into two groups, though this task is easy for the first dataset and harder for this one. We can then
calculate the means of the data for each group, to get our estimate for �1 and �2 respectively
(recall that the maximum likelihood estimate for � is the sample mean) In general, we can take
the following iterative strategy: we first randomly choose some values for �01 and �02 to be our
starting points. We then compare each data point with �01 and �02. If, for example, y1 is close to �01
than �02, then it is more likely that y1 is generated by the normal density f .y; �01/. So we can say
“hey, the guy y1 belongs to f .y; �01/”. Similarly, We assign each data point yi from fy2; : : : ; yng
to f .y; �01/ or f .y; �02/ according to the distance of yi to �1 or �2. After we do this, we have
divided the dataset in to two camps. We can then calculate the average value in each camp, to get
our new estimate of �1 and �2, and repeat the assignment process...

Sounds familiar? This is exactly the k-means algorithm! In each step, for each data point yi ,
we assign yi to �.t/1 or �.t/2 according to the distance of yi to each point, where .t/ denotes our
current estimate of the parameters. In other words, P.yi � f1/ D 1 and P.yi � f2/ D 0 if
f .yi ; �

.t/
1 / > f .yi ; �

.t/
2 /, and vice versa. We designate yi to either belong to the first density, or

the second density, but not both.
The EM algorithm offers a softer approach: instead of 0=1 decision, we assign probabilities

that yi belongs to f1 or f2. Namely, both P.yi � f1/ and P.yi � f2/ can be positive, and they
sum to 1. Say for our dataset fy1; : : : ; yng, y1 has 0:4 probability of being generated by f1, y2 has
0:65 probability of being generated by f1, : : :, and yn has 0:1 probability of being generated by f1.
Of course, in reality, yi is either generated by f1 or f2, but not both. However, we are uncertain
about which density generated yi . If we associate f1 or f2 directly to yi , as in k-means algorithm,
we may get it wrong. That is why we only assign probabilities here. If P.yi � f1/ is close to 1,
then it represents that we are pretty certain that yi is generated by f1. If P.yi � f1/ is close to 0
then we reckon it is unlikely that yi is generated by f1. Having assigned the “score” for each data
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point, we can do a weighted average to get our estimate for �1:

O�1 D
0:4y1 C 0:65y2 C � � � C 0:1yn

0:4C 0:65C � � � C 0:1

(estimate for �2 is similar) Note that the k-means approach corresponds to the following:

O�1 D
Œy1 � f1�y1 C Œy2 � f1�y2 C � � � C Œyn � f1�yn

Œy1 � f1�C Œy2 � f1�C � � � C Œyn � f1�
(2)

where Œyi � f1� D 1 if we assign yi to f1, and 0 if not. Thus in this sense the EM algorithm can
be seen as a generalization of the k-means algorithm.

How do we assign those probabilities for each data point? We use the current estimate of the
parameters .�.t�1/1 ; �

.t�1/
2 ; p.t�1//, as well as the data point yi :

P.yi � f1/ WD P.Zi D 1jyi/ D
P.yi ; Zi D 1/

P.yi/

D
P.yi jZi D 1/ � P.Zi D 1/

P.yi/

D
f .yi ; �

.t�1/
1 / � p.t�1/

P.yi/

D
f .yi ; �

.t�1/
1 / � p.t�1/

P.yi jZi D 1/ � P.Zi D 1/C P.yi jZi D 0/ � P.Zi D 0/

D
f .yi ; �

.t�1/
1 / � p.t�1/

f .yi ; �
.t�1/
1 / � p.t�1/ C f .yi ; �

.t�1/
2 / � .1 � p/.t�1/

(P.yi � f2/ WD P.Zi D 0jyi/ D 1 � P.yi � f1/) Thus, the score is P.Zi D 1jyi/. Given the
current model (i.e. the current estimated parameters), and given the point yi , we update our belief
about how likely it is draw from the first, or the second density. I color data points by purple,
and I color parameters by green. All of them are numerical values. Also recall the familiar normal
density function f .y; �i/ D .1=

p
2�/ expf�.y��i/2g. We see from the last line that all variables

are known, and so P.Zi D 1jyi/ is a concrete numerical value, a number.
This, is our expectation step. Note that P.Zi D 1jyi/ D E.Zi D 1jyi/. Each data point yi

is draw from either f1 or f2. We don’t know which one. So we assign probabilities, or in other
words we use E.Zi jyi/ to estimate the unknown Zi . This way we can get rid of Zi , turn them to
numerical values fP.yi � f1/gniD1, and then we can take the weighted average to get the estimate
for the parameter �1. This can be justified by maximum likelihood estimation.

4.3 Expectation and Maximization of Likelihoods

Notation: y D .y1; : : : ; yn/ and Z D .Z1; : : : ; Zn/. To further save symbols, we use f1 to mean
f1.yi ; �1/ and f2 to mean f1.yi ; �2/. This should be clear from the context.
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The likelihood is2

Lc.�;Z/ D p.y;Z; �/ D p.yjZ/p.Z/

D Œf .y1jZ1/p.Z1/� � � � Œf .ynjZn/p.Zn/�

D

nY
iD1

f
Zi
1 f

.1�Zi /
2 pZi .1 � p/.1�Zi /

Here � D .�1; �2; p/. We want to choose � to maximize the log likelihood. The log likelihood is

`c.�;Z/ D logLc.�;Z/ D
nX
iD1

logf Zi1 f
.1�Zi /
2 pZi .1 � p/.1�Zi /

D

nX
iD1

ŒZi logf1 C .1 �Zi/ logf2 CZi logp C .1 �Zi/ log.1 � p/�

(3)

I use capital Zi throughout to emphasize that Zi is unknown to us. In this view, the log likelihood
is a function of the random variables fZ1; : : : ; Zng. We can then take the conditional expectation
of the log likelihood given Y1 D y1; : : : ; Yn D yn:

EŒ`c.�;Z/jy� D
nX
iD1

Œ�i logf1 C .1 � �i/ logf2 C �i logp C .1 � �i/ log.1 � p/�

D

nX
iD1

�
��i.yi � �1/

2
� .1 � �i/.yi � �2/

2
C �i logp C .1 � �i/ log.1 � p/

�
C constant

where �i D E.Zi jyi/ is the calculated value as discussed above. We can see that the this function
is composed of three sums (we omit those constants): g.�/ D g.�1; �2; p/ WD EŒ`c.�;Z/jy� D

`1.�1/C `2.�2/C `3.p/ where

`1.�1/ D �

nX
iD1

�i.yi � �1/
2

`2.�2/ D �

nX
iD1

.1 � �i/.yi � �2/
2

`3.p/ D �

nX
iD1

�i logp C .1 � �i/ log.1 � p/

Maximizing this function is easy:

@g

@�1
D
d`1

d�1
D 2

nX
iD1

�i.yi � �1/ D 0 H) �1 D

Pn
iD1 �iyiPn
iD1 �i

2Note ŒZi D 1� D Zi and ŒZi D 0� D 1 �Zi , so for example f ŒZiD1�1 f
ŒZiD0�
2 D f

Zi
1 f

.1�Zi /
2 .
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@g

@�2
D
d`2

d�2
D 2

nX
iD1

.1 � �i/.yi � �2/ D 0 H) �2 D

Pn
iD1.1 � �i/yiPn
iD1.1 � �i/

@g

@p
D
d`3

dp
D

nX
iD1

�
�i

p
C
�i � 1

1 � p

�
D

nX
iD1

�i � p

p.1 � p/
D 0)

nX
iD1

.�i � p/ D 0) p D

nX
iD1

�i=n

Note that in Eq. (3), if we assign Zi to be either 1 or 0 by some rules, as in the k-means
algorithm, then the i th term in the summation would become either Œlogf1C logp� (whenZi D 1)
or Œlogf2 C log.1 � p/� (when Zi D 0). Maximizing the resulting log-likelihood function would
be equally easy. In this case, the MLE for �1 would be the mean value of all yis for whichZi D 1,
the MLE for �2 would be the mean value of all yis for which Zi D 0, as in Eq. (2). Similarly,
the MLE for p would be the proportion of is for which Zi D 1. Instead of assign Zi to either
1 or 0, the EM algorithm substitute Zi by E.Zi jyi/, and the resulting log-likelihood function is
as well easy to maximize. The output of MLE are new parameters �1 and �2, along with p. We
can then use the parameters those parameters to further calculate E.Zi jyi/. This is like in k-means
algorithm, after we assigned each point to the nearest center, we calculate new mean value for each
group (i.e. new parameters), and then we use the new means to further assign each point to a class.

I have used the mixture of two normal densities as example. But we can see that the approach
can be easily generalized: Zi can take values from f1; : : : ; kg. If Zi D j then the point is draw
from some density fj . The log-likelihood function, in terms of the random variable Zi , is still a
linear combination of ŒZi D 1�; : : : ; ŒZi D k � 1� (ŒZi D j � is a random variable that is equal to
1 if Zi D j and 0 otherwise). We can then substitute ŒZi D j � by EŒŒZi D j �jyi �. The resulting
log-likelihood function can be separated, and we can choose each parameter separately, as above.

The general procedure is

EM Algorithm

1. Initialize parameters �0.
Repeat until convergence: f

2. Calculate E.Zi jyi/ for each i . This is like a soft assignment to clusters.

3. � D argmax� EŒ`c.�;Z/jy� where E.Zi jyi/s calculated from step 2 appear in the func-
tion. g

The next natural question is, how do we know that this iterative procedure can truly maximize
the complete log-likelihood? To simplify notation, we focus on each individual data point x. The
log-likelihood of the data is the sum of the log-likelihood of each individual data point.
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The log-likelihood is

logp.xI �/ D log
X
z

p.x; zI �/

D log
X
z

p.x; zI �/
q.z/

q.z/

D log Eq

�
p.x; zI �/

q.z/

�
� Eq log

�
p.x; zI �/

q.z/

�
WD L.q; �/

where q.z/ denotes any distribution of Z. The fourth line is derived from Jensen’s inequality
f .EX/ � Ef .X/ for concave function f and random variable X , and from the fact that log.x/
is a concave function. We can see that L.q; �/ gives a lower bound to the log-likelihood function.
We want the bound to be as tight as possible, so we would like to shift q so as to make L.q; �/ to
be as close to p.xI �/ as possible. When does the equality holds? It is when EX D X , i.e. X is a
constant. In order for the expression inside the square bracket to be a constant, we’d like to have

q.z/ / p.x; z; �/

And since we also require q.z/ to be a probability distribution (
P
z q.z/ D 1), the best q.z/ is now

q�.z/ D
p.x; zI �/P
z p.x; zI �/

D
p.x; zI �/

p.xI �/
D p.zjxI �/:

Now we see why we take the conditional expectation in the E-step: this way L.q; �/ would touch
the log-likelihood function at current interaction of the parameters � .t/, so we have a tight bound,
and it is L.q�.z/; �/ that we are trying to maximize in the M-step. To put it differently, the
EM algorithm can be seen as coordinate ascent: the E-step maximizes L.q; �/ from the first
coordinate, and the M-step maximizes L.q; �/ from the second coordinate. We can imagine that
we follow a zigzag path to reach a (local) maximum of L.q; �/. Thus, both the E-step and the
M-step contribute to the increase of the objective function. Both of them are equally important:
without the E-step we do not know where we are going, and without the M-step we also have no
point in doing anything else.

Fig. 23 provides a visualization:

3The figure is taken from the Internet.
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Figure 2: visualization of EM algorithm
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5 Simulation Methods

5.1 Monte Carlo Integration

Monte Carlo integration is a numerical technique for calculating integrals and summations. Sup-
pose we want to evaluate the integral

I D

Z b

a

h.x/dx

for some complicated function h W Œa; b�! R. We can rewrite the above as

I D

Z b

a

Œh.x/.b � a/� �
1

b � a
dx D

Z b

a

w.x/f .x/dx

with w.x/ D h.x/.b � a/ and f .x/ D 1=.b � a/. We see that f is the probability density for the
uniform distribution U.a; b/. Hence

I D Ef .w.X//

with X � U.a; b/. We transformed the problem of calculating an integral to calculating the
expectation of some (simple) random variable. We approximate this expectation by its empirical
counterpart, namely we draw samples fX1; : : : ; XN g from the distribution of the random variable
and then take arithmetic average bI D 1

N

NX
iD1

w.Xi/:

By law of large numbers (Theorem 1.7), bI converges to the true theoretical value I as N ! 1.
To emphasize again, in Monte Carlo method we transform an integration problem to a probability
problem (calculating expectations), and it is at this point that we resort to numerical techniques.
We use tools from probability theory to guarantee theoretical convergence of the approximation to
the true value.

It is also possible to calculate the standard error of the estimatebI . It is

bse D s
p
N

where s2 D
PN
iD1.w.Xi/ �

bI /2=.N � 1/. A 1 � ˛ confidence interval for I isbI ˙ z˛=2bse.

Example 5.1. Let h.x/ D x3. Then I D
R 1
0
x3dx D 1=4 D 0:25. To evaluate the integral using

Monte Carlo integration method, we just need to draw samples fx1; : : : ; xN g from the uniform
distribution on Œ0; 1�, and then calculate

PN
iD1 x

3
i =N . For N D 10; 000 we getbI D 0:248 with a

standard error of 0:0028.
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Example 5.2. Let

f .x/ D
1
p
2�
e�x

2=2

be the standard normal density. Suppose we want to compute the CDF at some point x:

I D

Z x

�1

f .s/ds D ˆ.x/:

We can write the integration as

I D

Z 1
�1

h.s/f .s/ds

where

h.s/ D

(
1 s < x

0 s � x:

This is EŒh.X/� with X � N.0; 1/. Thus we can draw samples fx1; : : : ; xN g from the standard
normal distribution N.0; 1/, calculate fh.x1/; : : : ; h.xN /g, and then calculate arithmetic average.
It is the number of observations that are less or equal to x divided by N .

Example 5.3. consider estimating the area of the unit circle (i.e.�) A D f.x; y/ j x2C y2 � 1g in
R2. We can place dots randomly in the square S D f.x; y/ j jxj � 1; jyj � 1g, count the number
of dots in the circle, and then divide the count by the total number of dots, finally multiply 4. To
see this, recall that the uniform distribution on S has density

f .x; y/ D

8<:
1

4
for .x; y/ 2 S;

0 otherwise.

And so

Area of A D
Z
A

1dxdy D

Z 1
�1

Z 1
�1

1A.x; y/dxdy D

Z
S

.1A.x; y/ � 4/ �
1

4
dxdy

D

Z 1
�1

Z 1
�1

.1A.x; y/ � 4/f .x; y/dxdy D Ef Œ1A.X/ � 4�

where X 2 R2 is uniformly distributed on S . Thus, to approximate Ef Œ1A.X/ � 4�, we uniformly
draw many samples from the square S , and for each sample we calculate if it is in the circle. Then
the approximation is given byPN

iD1 1.xi ; yi/ � 4

N
D 4 �

PN
iD1 1.xi ; yi/

N
:
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5.2 Importance Sampling

Importance sampling is a variance reduction technique that can be used in the Monte Carlo method.
The idea behind importance sampling is that certain values of the input random variables in a simu-
lation have more impact on the parameter being estimated than others. If these “important” values
are emphasized by sampling more frequently, then the estimator variance can be reduced. Hence,
the basic methodology in importance sampling is to choose a distribution which "encourages" the
important values. Let g be a density that we know how to simulate from.

I D

Z
h.x/f .x/dx D

Z
h.x/f .x/

g.x/
g.x/dx D Eg.w.X//

with w D hf=g. We can simulate X1; : : : ; XN from g and estimate I by

bI D 1

N

NX
iD1

w.Xi/ D
1

N

NX
iD1

h.Xi/f .Xi/

g.Xi/
:

There is a potential problem: bI may have infinite standard error, as can be seen from the second
moment:

Eg.w
2.X// D

Z �
h.x/f .x/

g.x/

�2
g.x/dx D

Z
h.x/2f .x/2

g.x/
dx:

If g has thinner tails than f , then this integral may be infinite.

5.3 Accept-Reject Algorithm

The accept-reject algorithm is a method for sampling from a distribution F with density f . If the
inverse of F can be worked out easily, then we can first draw random samples fu1; : : : ; ung from
the uniform distribution U.0; 1/. Then fx1 D F �1.u1/; : : : ; xn D F �1.un/g should be a random
sample from the distribution F . To see this, letX D F �1.U / and note PfX � xg D PfF �1.U / �

xg D PfU � F.x/g D F.x/, so that the distribution of X is indeed F . However, if the inverse
of F cannot be worked out analytically, then we can resort to the accept-reject algorithm. The
idea of the algorithm is to enclose the density f by some density g that we know how to sample
from. Then place a bunch of dots on the graph beneath g. The x coordinate of each dot is placed
according to the density g, and the y coordinate of each dot is placed randomly beneath g (note
that if we enclose f by a rectangle, i.e. use the uniform distribution, the dots are placed randomly
in the rectangle). Then remove the dots that fall out of the graph of f . The x coordinates of the
remaining dots should be a random sample from the distribution f .
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Let g.x/ be the density of some random variable Y that we know how to sample. Let ˛ D
argmaxx2Sff .x/=g.x/g, where S is the support. Then f .x/ � ˛g.x/ for all x 2 S .
Repeat:

� Draw x from g and u from U.0; 1/. If

u �
f .x/

˛g.x/

then we accept x, otherwise we reject x.

The output is a sample fx1; : : : ; xng from the distribution f .

We can show the correctness of the algorithm as follows:

PfX � xg D P

�
Y � y j U �

f .Y /

˛g.Y /

�
D

P
n
Y � x; U � f .Y /

˛g.Y /

o
P
n
U � f .Y /

˛g.Y /

o
D

R x
�1

R f.z/
˛g.z/

0 du � g.z/dzR1
�1

R f.z/
˛g.z/

0 du � g.z/dz

D

Z x

�1

f .z/dz D F.x/:

5.4 Markov Chain Monte Carlo (MCMC)

Consider again the integration problem

I D

Z
h.x/f .x/dx:

The Markov Chain Monte Carlo (MCMC) method constructs a Markov chain fXig1iD1 whose sta-
tionary distribution is f . Under certain conditions it will follow that

1

N

NX
iD1

h.Xi/
p
�! Ef Œh.X/� D I:

We have the following theorem

Theorem 5.4. An irreducible, ergodic Markov chain has a unique stationary distribution � . The
limiting distribution exists and is equal to � . If g is any bounded function, then with probability 1

lim
N!1

1

N

NX
nD1

g.Xn/! E�.g.X// D
X
j

g.j /�j :
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5.4.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a specific MCMC method. Let q.y j x/ be an arbitrary,
friendly distribution (we know how to sample from q.y j x/). It is called the proposal distribution.

Choose an arbitrary X0. Suppose we have generated X0; X1; : : : ; Xi . To generate XiC1,

1. Generate a proposal or candidate Y � q.y j Xi/.

2. Evaluate r D r.Xi ; Y / where

r.x; y/ D min
�
f .y/

f .x/

q.x j y/

q.y j x/
; 1

�
:

3. Set

XiC1 D

(
Y with probability r

Xi with probability 1 � r:

A simple way to execute step 3 is to generate u from U.0; 1/ and set XiC1 to Y if u < r and
Xi otherwise. A common choice for q.y j x/ is N.x; b2/ for some b > 0. This means that the
proposal is draw from a normal distribution centered at the current value. In this case the proposal
density q is symmetric and r simplifies to

r D min
�
f .y/

f .x/
; 1

�
:

The transition function p.x; y/ that the algorithm designs is

p.x; y/ D r.x; y/ � q.y j x/: (4)

We show that it satisfies the detailed balance property

f .x/p.x; y/ D f .y/p.y; x/ (5)

so that Z
f .y/p.y; x/dy D

Z
f .x/p.x; y/dy D f .x/

Z
p.x; y/dy D f .x/;

which implies that f is a stationary distribution of the Markov chain with transition function
p.x; y/.

Consider two states x and y. Either

f .x/q.y j x/ < f .y/q.x j y/ or f .x/q.y j x/ > f .y/q.x j y/:
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In the first (second) case, the probability of flowing from x to y is smaller (larger) than the prob-
ability of flowing from y to x. Without loss of generality assume the later, i.e. there is too much
flow from x to y and too little from y to x. This implies that we should set

r.x; y/ D min
�
f .y/

f .x/

q.x j y/

q.y j x/
; 1

�
D
f .y/

f .x/

q.x j y/

q.y j x/
;

r.y; x/ D min
�
f .x/

f .y/

q.y j x/

q.x j y/
; 1

�
D 1:

Thus we should reduce the probability of jumping from x to y and increase the probability of
jumping from y to x. The transition probability according to Eq. (4) is

p.x; y/ D r.x; y/ � q.y j x/ D
f .y/

f .x/

q.x j y/

q.y j x/
� q.y j x/ D

f .y/

f .x/
q.x j y/: (6)

On the other hand,
p.y; x/ D r.y; x/ � q.x j y/ D q.x j y/: (7)

From Eq. (6) and Eq. (7), we see that indeed

f .x/p.x; y/ D f .y/p.y; x/:

5.4.2 Gibbs Sampling

Gibbs sampling is a way to turn high-dimensional problem into several one-dimensional problem.
Let’s illustrate this with two dimensional data. Suppose we want to sample from fX;Y .x; y/, and
suppose we know how o simulate from fX jY .xjy/ and fY jX.yjx/. Let .X0; Y0/ be starting values.
After we drawn .X0; Y0/; : : : ; .Xn; Yn/, the next sample .XnC1; YnC1/ is determined by

XnC1 � fX jY .x j Yn/;

YnC1 � fY jX.x j XnC1/:
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6 Selected Topics

6.1 Principal Component Analysis

Suppose we have a data matrix Xn�k, namely n data points of k random variables .X1; : : : ; Xk/.
Suppose k is very large, e.g. 1000......then in this case it may be very difficult to do data analysis
with this original data. For example, it is hard to make sense of linear regressions like this:

y D ˇ0 C ˇ1X1 C � � � C ˇ1000X1000 C ";

or to visualize clustering of data points in 1000 dimensional space. Also, many variables may be
correlated, so there may be redundancy in the data. Thus we may want to project our data into
smaller spaces (e.g. 2 or 3 dimensional space), with as little distortion as possible. For example, if
two points x and y are far apart in the original data set, then we would like the two projected points
x0 and y 0 to be far apart. In general, we are trying to represent the variations in the data, originally
spread across thousands of dimensions, by variations in terms of two or three variables (so that we
can, for example, visualize the high dimensional data without losing much information)

To transform our data into new space, we use k orthonormal unit vectors u1; : : : ; uk . We let
u D .u1; : : : ; uk/ denote the k � k matrix. Our new data matrix would be Xu. Each row r (data
point) is transformed into the new row (coordinate)

Œhr; u1i; hr; u2i; : : : ; hr; uki� D Œr � u1; r � u2; : : : ; r � uk�;

so that each point d is represented in the new coordinate system as

d D hd; u1iu1 C hd; u2iu2 C : : :C hd; ukiuk:

Note that X 01 D

0B@d1 � u1� � �
dn � u1

1CA D Xu1 and similarly each vector of realizations of variable Xi is

transformed into X 0i D Xui .
At this point, we note that the data matrix has to be standardized, so that EŒXi � D 0 for each

i D 1; : : : ; k. This ensures that the covariance matrix is XTX=.n � 1/.
Now, we would like to maximize the variance of the first component. The variance is

.n � 1/ � var.Xu1/ D .Xu1/
T .Xu1/

D kXu1k
2
D hXu1; Xu1i

D hu1; X
TXu1i D hu1; u1iXTX

D ku1k
2
XTX
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Namely, we want to maximize hu1; u1iXTX subject to the constraint that ku1k2 D 1. Since XTX

is symmetric and positive-definite, by the spectral theorem there exists an orthonormal basis such
that XTX is 0BBBB@

�1

�2
: : :

�k

1CCCCA :
We assume the eigenvalues has been arranged so that �1 � �2 � � � � � �k. Suppose u1 has
coordinate .u11; u21; : : : ; uk1/ in this basis. Then

hu1; u1iXTX D �1u
2
11 C �2u

2
21 C : : :C �ku

2
k1;

where u211 C u
2
21 C � � � C u

2
k1
D 1. The coordinate acts like a weight, so it is obvious that to

reach maximum u1 has to be .1; 0; : : : ; 0/, i.e. the unit length eigenvector corresponding to the
first eigenvalue �1. By the same token, to

max
ui
var.Xui/ D hui ; uiiXTX s.t. kuik2 D 1

we just need to let u�i D .0; 0; : : : ; 1; : : : ; 0/, i.e. the unit length eigenvector corresponding to �i .
From our (optimal) solution u1; : : : ; uk, the (optimal) values for .n� 1/ � var.Xu1/; : : : ; .n�

1/ � var.Xuk/ are exactly the eigenvalues �1; : : : ; �k. We have

.n � 1/ � .var.Xu1/C � � � C var.Xuk// D �1 C � � � C �k D t race.X
TX/

and also
.n � 1/ � .var.X1/C � � � C var.Xk// D t race.X

TX/

so that
var.Xu1/C � � � C var.Xuk/ D var.X1/C � � � C var.Xk/;

i.e. our transformation does not lose information. The first transformed variable X 01 D Xu1 has
the largest variance, the second X 02 has the second largest variance etc. Furthermore,

Cov.X 0i ; X
0
j / D Cov.Xui ; Xuj / D .Xui/

T .Xuj /=.n � 1/

D uTi X
TXuj=.n � 1/

D �ju
T
i uj=.n � 1/

D �j � 0

D 0:

so that the new variables are all uncorrelated.
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6.2 Clustering

Given a set of data points, clustering gives a partition. We define the class function

C W X ! f1; : : : ; kg

that maps each data point to its class. We use C1; : : : ; Ck to denote the pre-image of the range, i.e.
the partition.

A popular clustering algorithm is K-means clustering. Given a set of observations X D
fx1; : : : ; xng, where each observation is d -dimensional real vector, k-means clustering aims to
partition the n-observations into k (k � n) sets C D fC1; : : : ; Ckg so as to minimize the within-
cluster variance, i.e. minimize

V.C1/C V.C2/C � � � C V.Ck/ D

kX
jD1

X
x2Cj

kx � NCjk
2

Note that the centroids
˚
NCj
	
jD1;:::;k

are in general not points in the original data sets. The problem
is in general NP-Hard. Instead, we shall use a heuristic algorithm, often called k-means algorithm
or Lloyd’s algorithm. It has three steps: initialization, partition, and update.

1. Initialize the mean of each class:

C1:mean D c
0
1 ; : : : ; Ck:mean D c

0
k:

2. Repeat until convergence:

for each x 2 X :
x 2 Cj if Cj D argmin

C

d.x; C / D argmin
C

d.x; C:mean/

The running time should be obvious: At each iteration we compute k distances
˚
d.x; Cj /

	
jD1;:::;k

for each data point x. There are n data points, so each iteration takes a total of n � k computations.
Each computation of distance takes d summations. So the total running time is O.n � k � d � T /,
where T is the number of iterations.

There are also metrics for evaluating clustering results, for example the silhouette coefficient.
A higher silhouette coefficient score relates to a model with better clusters. It is defined for each
sample and is composed of two scores:

� a.x/: The mean distance between x and all other points in the same class.

a.x/ D EŒd.x; y/ j y 2 C.x/�
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� b.x/: The mean distance between x and all other points in the next nearest cluster.

b.x/ D EŒd.x; y/ j y 2 argmin
C¤C.x/

d.x; C /�

The silhouette coefficient function s W X ! R is defined as

s.x/ D
b.x/ � a.x/

maxfa.x/; b.x/g
:

Normally we would expect a.x/ � b.x/ for each x so that s.x/ � 0. If b.x/ < a.x/ then the
classification for x would be bad and we have s.x/ < 0. In the extreme case that a.x/ D 0, i.e.
C.x/ D fxg, we have s.x/ D b.x/=b.x/ D 1. In the other extreme case b.x/ would be close to
0, so that s.x/ will be close to �1. Note that by definition b.x/ can never be 0, so s.x/ can never
reach �1. We thus have �1 < s.x/ � 1.
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