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Part I

Probability Theory



1 Measures and Integrations

1.1 The Monotone Class Theorem

Definition 1.1. Let X be some set, and let P .X/ be its power set. A subset A � P .X/ is called a � -algebra if it
satisfies the following three properties:

1. X 2 A;

2. A is closed under complementation: A 2 A) X n A 2 A;

3. A is closed under countable unions: A1; A2; � � � 2 X )
S1
iD1Ai 2 A.

It follows from the definition that a � -algebra is also closed under countable intersections. Elements of the � -
algebra are called measurable sets. An ordered pair .X;A/, where X is a set and A is a � -algebra over X , is called a
measurable space. A function between two measurable spaces is called a measurable function if the preimage of every
measurable set is measurable. We can characterize � -algebras in terms of simpler structures, �-systems and Dynkin
systems:

Theorem 1.2. A � P .X/ is a � -algebra if and only if it is both a �-system and a �-system.

� A �-system (or p-system) P is a collection of subsets of X that is closed under finitely many intersections;

� a Dynkin system (or �-system) D on X is a collection of subsets of X that contains X and is closed under
complement and under countable unions of disjoint subsets:

1. X 2 D;

2. if A 2 D, then Ac 2 D;

3. if A1; A2; A3; : : : are such that Ai \ Aj D ¿ for all i ¤ j , then
S1
nD1An 2 D.

Equivalently, D is a Dynkin system if

1. X 2 D;

2. if A;B 2 D and A � B , then B n A 2 D;

3. for A1 � A2 � A3 � � � � we have
S1
nD1An 2 D.

The statement can be verified by noting that conditions 2 and 3 in the defninition of Dynkin system together with
closure under finite intersections imply closure under countable unions.

Why do we care about �-systems and �-systems? One reason is the Dynkin’s �-� theorem (or the monotone class
theorem). It is an essential tool for proving many results about properties of specific � -algebras.

Theorem 1.3 (Monotone Class Theorem / �-� Theorem). If P is a �-system and D is a �-system such that P � D,
then �.P / � D.

Often, we want some � -algebra A to have some desirable property. To do so, we may collect all sets satisfying
some property into a collection D. We may then find some collection P � D such that it is closed under intersection,
and generates A. If we can demonstrate thatD is a �-system, then we can use the theorem to conclude that A D �.P /

also enjoys the property. One of the most fundamental uses of the �-� theorem is to show equivalence of separately
defined measures or integrals.
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Example 1.4. Let .Œ0; 1�;B.R/; �L/ be the unit interval Œ0; 1� with the Lebesgue measure on Borel sets. Let �0 be
another measure on Œ0; 1� satisfying �0.Œa; b�/ D b � a, and let D be the family of sets S such that �L.S/ D �0.S/.
Let I D f.a; b/; Œa; b/; .a; b�; Œa; b� W 0 < a � b < 1g, and observe that I is closed under finite intersections, that
I � D, and that B.R/ is the � -algebra generated by I . It may be shown that D is a Dynkin-system. From Dynkin’s
�-� theorem it follows that �.I / D B.R/ � D, from which we conclude that the Lebesgue measure is unique on
B.R/.

Example 1.5. The �-� theorem can also motivate the use of distribution functions in probability. Recall for random
variable X W �! R, its distribution function is defined as

FX .x/ D PfX � xg; x 2 R:

Recall the measure it induced on R is

�.B/ D PfX�1.B/g; B 2 B.R/;

so the distribution function specifies the measure on f.�1; x� W x 2 Rg, which is a �-system. By the same argument
as in Example 1.4, if two random variables X and Y equal in distribution (FX D FY /, then they have the same
probability measure on R. Distribution functions thus uniquely characterize random variables.

A similar result of the monotone class theorem for functions also holds.

Theorem 1.6. Let .X;A/ be a measurable space. Let P be a �-system that constains X and let F D ff W X ! Rg

(similar to the role of a Dynkin system) be a collection of real-valued functions with the following properties:

1. A 2 P ) 1A 2 F ;

2. f; g 2 F ) f C g 2 F and cf 2 F for any real number c;

3. if ffng � F is a sequence of non-negative functions that increase to a bounded function f , then f 2 F .

Then F contains all bounded functions that are measureable with respect to �.P /.

Often, P is a generating class of A (i.e. �.P / D A/, so if F enjoys some desired property, then so does the space
of all bounded (real-valued) measurable functions on X .

Proof. The assumption that X 2 P , together with 2 and 3 imply that D D fA 2 X W 1A 2 F g is a �-system. By 1,
P � D. By the �-� theorem (Theorem 1.3), �.P / � D. This means F contains all indicator functions defined on
sets in �.P /. 2 then implies that F contains all simple functions defined with respect to �.P /, and then 3 implies that
F contains all bounded measurable functions with respect to �.P /.

In the course of the proof, we used an important approximation result: a function f W X ! RC is measurable if
and only if there exists a non-decreasing sequence ffngn�1 of simple functions such that fn " f , i.e. for any x 2 X

f .x/ D lim
n!1

fn.x/:

1.2 Measurable Spaces and Functions

We record here on some properties about measurable spaces and functions:

� Measurability on generating class: if f W .E;E/! .F;F / and F D �.C/, then f is E=F -measurable if and
only if

f �1.B/ 2 E 8B 2 C :
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� Continuous functions are measurable: if f W E ! R is continuous, then f is E=B.R/-measurable where
E D B.E/ is the Borel � -algebra on E. This is because the preimage of f is open for every open set in R.

� Products of measurable spaces: Let .E;E/ and .F;F / be two measurable spaces. The product � -algebra E˝F

is defined as
E ˝ F D �.fA � B W A 2 E; B 2 F g/

and .E � F;E ˝ F / is a product measurable space. A special case is when E D F D R, where A and B take
the form of open intervals, so that the generating class of B.R/˝B.R/ is the set of open rectangles. We have
B.R2/ D B.R/˝B.R/. This is because the set of open rectangles is a basis for the topology of R2.

� Other examples

˘ Since C D f.�1; z� W z 2 Rg is a generating class for the Borel � -algebra of R, a real-valued function
f W E ! R is E=B.R/-measurable if and only if f �1..�1; z�/ D fx 2 E W f .x/ � zg 2 E for any
z 2 R.

˘ Composite functions are measurable: for

.E;E/
f
�! .F;F /

g
�! .G;G /

the function g ı f is E=G -measurable.

˘ An indicator function 1A W .E;E/! f0; 1g is measurable if and only if A 2 E .

˘ If ffngn�1 is a sequence of E=B.R/-measurable functions, then

inf
n
fn and sup

n
fn

are measurable as well. Consider the latter. It suffices to show that fx 2 E W supn fn.x/ � zg 2 E for any
z 2 R. But

fx 2 E W sup
n
fn.x/ � zg D

\
n�1

fx 2 E W fn.x/ � zg

and since each set in the intersection is in E and E is closed under countable intersections, we have the
desired result. In a similar fashion,

lim sup
n
fn D lim

N!1
sup
n�N

fn D inf
N�1

sup
n�N

fn and lim inf
n
fn D lim

N!1
inf
n�N

fn D sup
N�1

inf
n�N

fn

are all measurable.

˘ As stated above, a positive real-valued function f W E ! RC is measurable if and only if there exists a
non-decreasing sequence ffngn�1 of simple functions such that fn " f .

1.3 Measures

Definition 1.7. Let .E;E/ be a measurable space. A mapping � W E ! Œ0;C1� is called a measure on .E;E/ if

1. �.¿/ D 0;

2. for any collection of pairwise disjoint sets A1; A2; : : : 2 E , i.e. Ai \ Aj D ¿ 8i ¤ j , one has

�

0@[
i�1

Ai

1A DX
i�1

�.Ai /:

When �.E/ <1, the measure � is said to be finite.
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Example 1.8. Below are some basic examples.

� Point mass/Dirac measure at x: let x 2 E. Define �x.A/ for any A 2 E as

�x.A/ D

(
1 if x 2 A

0 if x … A:

� Counting measure: Let D � E be countable and for any A 2 E define �.A/ as

�.A/ D jA \Dj D
X
x2D

ıx.A/:

� Discrete measure: let D � E be countable and m W D ! RC. Define �.A/ for any A 2 E as

�.A/ D
X
x2D

m.x/ıx.A/:

Note the relationship between counting measure and discrete measure: for A 2 E , �.A/ D 0 implies that
�.A/ D 0. We say that � is absolutely continuous with respect to �. We write � � �.

1.4 Lebesgue Integration

Let .E;E; �/ be a measure space. We consider how to define integration �.f / for measurable functions f W E ! R.
For a simple function like

f D

nX
iD1

ai1Ai ;

where ai � 0 and fA1; : : : ; Ang is a partition of E into E-sets, we can define the integration of f as

�.f / WD

nX
iD1

ai�.Ai /:

For a non-negative function f W E ! RC, we know there exists a sequence of simple functions ffngn�1 such that
fn " f . Note that

� since fn is simple, �.fn/ is defined;

� since fn � fnC1, we have �.fn/ � �.fnC1/.

Thus we can defnine �.f / as
�.f / WD lim

n!1
�.fn/:

For a general measurable function f W E ! R, we can split it into positive part f C D maxff; 0g D f _ 0 and
negative part f � D �minff; 0g D �.f ^ 0/, so that f D f C � f �. Since both �.f C/ and �.f �/ are defined, we
may define

�.f / WD �.f C/ � �.f �/

provided at least one of the two summands on the right hand is finite. If �.f C/ D �.f �/ D C1, then �.f / is
undefined. Note that f is integrable if and only if �.jf j/ < C1.
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2 Probability Theory

2.1 Probability Spaces

A probability space .�;F ;P/ is a measure space where P.�/ D 1. Below are some elementary properties:

� (Monotonicity) For A;B 2 F such that A � B , one has P.A/ � P.B/.

� (Inclusion/exclusion formula) For any n � 1 and A1; : : : ; An 2 F one has

P

"
n[
iD1

Ai

#
D

nX
iD1

P.Ai / �
X
i<j

P.Ai \ Aj /C : : :C .�1/
nC1P.A1 \ � � � \ An/:

Note that for n D 2, the formula is P.A1 [ A2/ D P.A1/C P.A2/ � P.A1 \ A2/. If A1; : : : ; An are pairwise
disjoint, then

P

"
n[
iD1

Ai

#
D

nX
iD1

P.Ai /:

� For any collection A1; A2 : : : of sets in F one has

P

"
1[
iD1

Ai

#
�

1X
iD1

P.Ai /:

� (Continuity of P ) If An " A 2 F , then P.An/ " P.A/. If An # A 2 F , then P.An/ # P.A/.

Proof. Let fAngn�1 be non-decreasing and let B1 D A1 and Bn D An n An�1 for n � 2. We have

An D

n[
iD1

Bi ; A D

1[
iD1

Bi ; and Bi \ Bj D ¿ 8i ¤ j;

so that

P.A/ D
1X
iD1

P.Bi / D lim
n!1

nX
iD1

P.Bi / D lim
n!1

P

 
n[
iD1

Bi

!
D lim
n!1

P.An/:

If fAngn�1 is non-increasing and An # A, then fAcngn�1 is non-decreasing and Acn " A
c . From the previous

part P.Acn/ " P.Ac/, so that

P.An/ D P.� n Acn/ D 1 � P.Acn/ # 1 � P.Ac/ D P.A/:

� (Continuity implies countable additivity) The above point demonstrated that countable additivity implies counti-
nuity. Here we prove a converse: if P is continuous along monotone sequences, i.e. An # ¿ ) P.An/ # 0,
then P is countably additive.

Proof. Let fBig1iD1 be a collection of pairwise disjoint sets in F , let B D
S1
iD1 Bi , and let Cn D

S1
iDn Bi .

Then Cn � CnC1 and Cn # ¿. We have

P.Cn/ D P

 
1[
iDn

Bi

!
D P

"
B n

 
n�1[
iD1

Bi

!#
D P.B/ � P

 
n�1[
iD1

Bi

!

D P.B/ �
n�1X
iD1

P.Bi /:

8



Let n!1 we have by continuity

0 D lim
n!1

P.Cn/ D P.B/ �
1X
iD1

Bi ;

as desired.

2.2 Random Variables

If X W �! R is a real-valued random variable, then

PX .A/ D P.X 2 A/ D PfX�1.A/g; A 2 B.R/

defines a probability measure on R. Since C D f.�1; x� W x 2 Rg is a �-system generating B.R/, PX is identified by
the function

x 7! FX .x/ D PX ..�1; x�/ D PfX � xg;

known as the distribution function. The distribution function satisfies three properties:

1. x < y ) FX .x/ � FX .y/, i.e. FX is non-decreasing;

2. lim
x!�1

FX .x/ D 0 and lim
x!C1

FX .x/ D 1;

3. FX is right continuous, i.e. for any x 2 R one has lim
�x#0

FX .x C�x/ D FX .x/.

The converse is also true: if a function F satisfies the three properties, then there exists a unique probability
measure P on .R;B.R// admitting F as its distribution function, i.e.

P..�1; x�/ D F.x/ 8x 2 R:

Given a distribution function F , there is also a corresponding probability space and a random variable: take
� D Œ0; 1�, F D BŒ0; 1�, P D �L and X.!/ D inffz 2 R W F.z/ � !g, namely for ! 2 Œ0; 1� on the vertical
y-axis, draw a horizontal line and cross the graph of F ; the x-value of the intersection is the value of X.!/. Roughly
F.x/ D !, so that PfX � xg D �L.Œ0; !�/ D ! D F.x/.

Now let’s talk about densities. Recall the Radon-Nikodym theorem:

Theorem 2.1 (Radon-Nikodym theorem). Let � be a � -finite measure on .E;E/ and let � be another measure such
that � � �. Then there exists a measurable function f W E ! RC such that for any A 2 E one has

�.A/ D

Z
A

fd�: (1)

The function f is almost-everywhere unique with respect to �, in the sense that if g is another function that satisfies

Eq. (1) then � ff ¤ gg D 0. It is called the Radon-Nikodym derivative and is denoted by
d�

d�
.

� Let D � R be a countable set and note that the counting measure � is � -finite. If PX � �, then the probability
distribution of X is discrete and the Radon-Nikodym derivative of PX with respect to � is

f .x/ D
dPX
d�

.x/ D PfX D xg;

the probability mass function of X . We have f .x/ � 0 for any x 2 R and
P
x2D f .x/ D 1.
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� The Lebesgue measure �L on R is � -finite. If PX � �L, then

f .x/ D
dPX
d�L

.x/

is the probability density function of X . It can be seen that f .x/ � 0 for any x 2 R and
R

R f .x/dx D 1.
So in this course, we regard the “probability density function” taught in elementary probability courses, as the
Radon-Nikodym derivative of two measures. This approach gives a precise meaning of the concept of densitiy
functions, and it unifies both the discrete case and the continuous case.

Example 2.2 (Examples of Densities). Here are common probability densities in terms of Radon-Nikodym derivatives.

� (Degenerate distribution at x0) For X D x0, we have PX .A/ D ıx0.A/ for A 2 B.R/. Its distribution function
is

FX .x/ D PX ..�1; x�/ D 1Œx0;C1/.x/:

� (Poisson distribution) Let � D
P
n2N ın be the counting measure on N. We sayX has Poisson distribution with

mean � > 0 if PX � � and

PfX D xg D
dPX
d�

.x/ D
�x

xŠ
e��

so for any A 2 B.R/

PX .A/ D

Z
A

dPX
d�

d� D
X

k2A\N

�k

kŠ
e��:

� (Binomial distribution) Let p 2 .0; 1/ and let �n D
Pn
iD0 ıi be the counting measure on f0; 1; : : : ; ng. A

random variable X is said to have the binomial distribution with parameters .n; p/ if PX � �n and

PfX D xg D
dPX
d�n

.x/ D

 
n

x

!
px.1 � p/n�x

so for any A 2 B.R/

PX .A/ D

Z
A

dPX
d�n

d�n D
X

k2A\f0;:::;ng

 
n

k

!
pk.1 � p/n�k :

� (Gamma distribution) A random variable X is said to have the gamma distribution with shape ˛ > 0 and rate
ˇ > 0 if PX � �L and

dPX
d�L

.x/ D
ˇ˛

�.˛/
x˛�1e�ˇx1.0;1/.x/;

so for any A 2 B.R/

PX .A/ D

Z
A

dPX
d�L

d�L D

Z
A\.0;1/

ˇ˛

�.˛/
x˛�1e�ˇxdx:

Recall the gamma function is defined as

�.˛/ D

Z 1
0

x˛�1e�xdx

so that PX ..0;1// D 1.

� (Gaussian distribution) A random variable X is said to have the Gaussian distribution with mean � and variance
�2 if PX � �L and

dPX
d�L

.x/ D
1

�
p
2�
e
�
.x��/2

2�2 8x 2 R

so for any A 2 B.R/

PX .A/ D

Z
A

dPX
d�L

d�L D
1

�
p
2�

Z
A

e
�
.x��/2

2�2 dx:
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� (Uniform distribution) for the uniform distribution on interval Œa; b�, its density is

dPX
d�L

.x/ D
1

b � a
1Œa;b�.x/

so that
PX .A/ D

Z
A

dPX
d�L

d�L D

Z
A\Œa;b�

1

b � a
dx:

2.3 Expectations

Let X be a random variable defined on a probability space .�;F ;P/.

Definition 2.3. The expectation of X is defined as

EX D

Z
�

XdP :

Below are several important theorems.

� Fatou’s lemma. If fXngn�1 is such that P fXn � 0g D 1 for all n � 1 then

E lim infXn � lim inf EXn:

� Monotone convergence theorem. If fXngn�1 is such that P fXn � 0g D 1 for all n � 1 and Xn " X a.s., then

lim
n!1

EXn D EX:

� Dominated convergence theorem. Let fXngn�1 be such that PfXn � Y g D 1 for all n � 1, where Y 2
L1.�;F ;P/, and suppose Xn

a:s:
��! X . Then Xn’s and X are in L1.�;F ;P/ and

lim
n!1

EXn D EX:

� Bounded convergence theorem Let fXngn�1 be such that PfXn � bg D 1 for all n � 1 and some b < 1. If
X

a:s:
��! X , then

lim
n!1

EXn D EX:

Theorem 2.4. For any measurable function f W R! RC, we have

Ef .X/ D

Z
�

f .X/dP D

Z
R
fdPX :

On the other hand, if there exists a probability measure P 0 on .R;B.R// such thatZ
R
fdPX D

Z
R
fdP 0

for any measurable function f W R! RC, then P 0 D PX .

Proof. The first statement is a change of measure from P to PX D P ı X�1. For the second statement, take f D 1A
where A 2 B.R/.

11



If we only know that the condition in Theorem 2.4 holds only for non-negative, bounded and continuous functions,
instead of all measurable functions, then we can still get PX D P 0. This is becuase we can approximate 1.a;b/ by some
sequence ffngn�1 of such functions. By the monotone convergence theorem,

PX ..a; b// D lim
n!1

PX .fn/ D lim
n!1

P 0.fn/ D P 0..a; b//;

so PX and P 0 agree on the p-system C D f.a; b/ W �1 < a < b <1g, so PX and P 0 agree on �.C/ D B.R/.

Example 2.5. Here we show several examples of random variables with infinite or undefined expectation.

� If X 2 Œ1;1/ has density f .x/ D 1=x2 on Œ1;1/, then the expectation is

EX D

Z 1
1

x �
1

x2
dx D

Z 1
1

1

x
dx D C1:

� Let X be a random variable that is equal to 2n with probability 2�n (for positive integer n). Then

EX D
1X
nD1

2�n � 2n D

1X
nD1

1 D C1:

� Cauchy distribution. The Cauchy distribution has probability density function

f .xI x0; / D
1

�

�
2

.x � x0/2 C 2

�
where x0 is the location parameter and  is the scale parameter. The expectation of a Cauchy distribution is
undefined. This is because, for an arbittrary a 2 R,Z 1

�1

xf .x/dx D

Z a

�1

xf .x/dx C

Z 1
a

xf .x/dx;

and the left term is �1 while the right term is C1, so the mean does not exist at all. Various results in
probability theory about expected values, such as the strong law of large numbers, fail to hold for the Cauchy
distribution. It is like a distribution with fat tails on both sides, and it oscillates between large positive values
and large negative values.

The second raw moment EX2 does exist and isC1. Similarly, higher even raw moments exist and are allC1,
but all odd raw moments do not exist. Since the mean does not exist, the variance — which is the second central
moment — is likewise non-existent.

If X is such that EjX jn <1, then EXn D
R

R x
ndPX is the n-th moment of X . In case X � 0 a.s., we can obtain

a formula for this:

Xn D

Z X

0

nxn�1dx D

Z 1
0

1f0<x<Xgnx
n�1dx

so that

EXn D

Z
�

Z 1
0

1f0<x<Xgnx
n�1dxdP D

Z 1
0

nxn�1
Z
�

1f0<x<XgdPdx D

Z 1
0

nxn�1PfX > xgdx:

In particular, if X takes values in N, then

EX D
1X
nD1

PfX > ng:

In the lecture Markov’s inequality and Jensen’s inequality (Ef .X/ � f .EX/ for convex f ) are also mentioned.
If f W R! RC is increasing, then for any b 2 R, one has

PfX > bg D

Z 1
b

dPX �

Z 1
b

f .x/

f .b/
dPX �

1

f .b/

Z
R
f .x/dPX D

1

f .b/
Ef .X/:
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2.3.1 Laplace transforms and characteristic functions

For a non-negative random variable X , one can define the Laplace transform of X as

OPX .t/ D Ee�tX D

Z
RC

e�txdPX 8t 2 Œ0;1/: (2)

In terms of the usual definition of Laplace transform for functions (Lff g.s/ D
R1
0
e�stf .t/dt ), Eq. (2) can be seen

as the Laplace transform of the probability density of X . Or in terms of Laplace transform for measures (Lf�g.s/ DR
Œ0;1/

e�st�.dt/), Eq. (2) can be seen as the Laplace transform of the probability measure PX . Since e�tX 2 Œ0; 1�,
its expectations is also in Œ0; 1�. Thus OPX 2 Œ0; 1� just as PX 2 Œ0; 1�. The importance of Laplace transforms comes
from the fact that they uniquely identify probability measures. Thus, for example, if we know the Laplace transform of
some distribution, then to prove a random variable Y has that distribution too, we may prove that its Laplace transform
has the same form.

Theorem 2.6. If X and Y are non-negative random variables, then

OPX .t/ D OPY .t/ 8t � 0 ” PX D PY :

Example 2.7. If X and Y are independent and non-negative random variables, then

OPXCY .t/ D Ee�t.XCY / D
�
Ee�tX

� �
Ee�tY

�
D OPX .t/ OPY .t/:

This formula can help us determine the probability distribution of X C Y . For example, if X � G.˛1; ˇ/ and
Y � G.˛2; ˇ/, then

OPX .t/ D

�
ˇ

ˇ C t

�˛1
OPY .t/ D

�
ˇ

ˇ C t

�˛2
:

Using this, the Laplace transform of X C Y is

OPXCY .t/ D OPX .t/ OPY .t/ D

�
ˇ

ˇ C t

�˛1C˛2
;

so using Theorem 2.6 we can conclude that X C Y is distributed as G.˛1 C ˛2; ˇ/.

Example 2.8. From Eq. (2), the first derivative of OPX .t/ is

d

dt
OPX .t/ D �EXe�tX

so that
d

dt
OPX .t/

ˇ̌̌̌
tD0

D �EX:

One can show that

.�1/n
dn

dtn
OPX .t/

ˇ̌̌̌
tD0

D EXn:

If X is real-valued instead of non-negative valued, it is convenient to use the characteristic function or Fourier
transform instead of the Laplace transform:

'X .t/ D EeitX D

Z
R
eitxdPX D

Z
R

cos.tx/dPX C i

Z
R

sin.tx/dPX

for any t 2 R. Since jeitxj D 1 we have j'X .t/j � 1. It can be shown that

'X .t/ D 'Y .t/ 8t 2 R ” PX D PY :
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Just as the distribution function
FX .x/ D E

�
1fX�xg

�
completely determines the behavior and properties of the probability distribution of the random variable X , the char-
acteristic function

'X .t/ D E
�
eitX

�
also completely determines the behavior and properties of the probability distribution of the random variable X . The
two approaches are equivalent in the sense that knowing one of the functions it is always possible to find the other,
yet they provide different insights for understanding the features of the random variable. However, in particular
cases, there can be differences in whether these functions can be represented as expressions involving simple standard
functions.

If a random variable admits a density function, then the characteristic function is its dual, in the sense that each of
them is a Fourier transform of the other. The characteristic function approach is particularly useful in analysis of linear
combinations of independent random variables: a classical proof of the Central Limit Theorem uses characteristic
functions and Lévy’s continuity theorem. Another important application is to the theory of the decomposability of
random variables.

2.4 Uniform Integrability

Proposition 2.9. A real-valued random variable X is in L1.�;F ;P/ if and only if

lim
K!1

EjX j1.K;C1/.jX j/ D lim
K!1

Z
xWjxj>K

jxjdPX D 0: (3)

Proof. First note that jX j1.K;C1/.jX j/ � jX j and fjX j > Kg # ¿ as K ! 1. If X 2 L1, then one can apply the
dominated convergence theorem to obtain

lim
K!1

EjX j1.K;C1/.jX j/ D E lim
K!1

�
jX j1.K;C1/.jX j/

�
D 0:

On the other hand, if the above condition holds true, then one can use the bound

jX j D jX j1Œ0;K�.jX j/C jX j1.K;C1/.jX j/ � K C jX j1.K;C1/.jX j/

to deduce that
EjX j � K C EjX j1.K;C1/.jX j/ <1;

thus proving that X is in L1.

The above proposition motivates the definition of uniform integerability.

Definition 2.10. A collection of real-valued random variable C is uniformly integrable if

lim
K!1

sup
X2C

EjX j1.K;C1/.jX j/ D 0 (4)

� From Proposition 2.9, X 2 L1 if and only if for any " > 0 there exists K0 suich that for any K > K0

EjX j1.K;C1/.jX j/ < ":

So another definition of uniform integrability would be: a collection of real-valued random variable C is uni-
formly integrable if for any " > 0 there exists K > 0 such that

sup
X2C

EjX j1.K;C1/.jX j/ < ": (5)

14



� From Eq. (5) we can see that if C is uniformly integrable, then it is also L1-bounded. However, uniform
integrability is a more stringent concept than L1-boundedness. A classical example to illustrate this is the
collection C D fXng

1
nD1 of random variables where Xn D n1.0;1=n/ on .�;F ;P/ D .Œ0; 1�;BŒ0; 1�; �L/.

It is L1-bounded since EjXnj D n � .1=n/ D 1 for any Xn, but for any K > 0 and n > K one has
EjXnj1.K;C1/.jXnj/ D n � .1=n/ D 1 so that C is not uniformly integrable.

� Here are two sufficient conditions for uniform integrability:

– If C is such that jX j � Z for some integrable random variable Z, then C is uniformly integrable.

– If C is a collection of Lp-bounded random variables for some p > 1, then C is uniformly integrable.

To prove the first statement, note EjX j1.K;C1/.jX j/ � EjZj1.K;C1/.jZj/ < " for some suitably chosen
K > 0, since Z is integrable. Hence C is uniformly integrable. The second condition means that there exists
M > 0 such that for any X 2 C one has EjX jp < M . Take v � K > 0. Using p > 1) v1�p � K1�p )

v � K1�pvp , we have

EjX j1.K;C1/.jX j/ � K
1�pEjX jp1.K;C1/.jX j/ � K

1�pM < "

where the last inequality follows from taking K large enough.

Theorem 2.11. A collection C of random variables is uniformly integrable if and only if it is L1 bounded and for any
" > 0 there exists a ı > 0 such that for any H 2 F with P.H/ < ı, one has

sup
X2C

EjX j1H < ":

2.5 Information and Determinability

The � -algebra generated by X , �.X/, is the smallest � -algebra with respect to which X is measurable. It is exactly
�.X/ D fX�1.A/ W A 2 B.R/g.

Theorem 2.12. Y is measurable with respect to �.X/ if and only if there is a deterministic function f W R! R such
that

Y D f .X/:

2.6 Independence

Definition 2.13. Let .�;F ;P/ be a probability space. The sub-� -algebras G1; : : : ;Gn of F are independent if for
any Ai 2 Gi ,

P.A1 \ � � � \ An/ D
nY
iD1

P.Ai /:

We can characterize independence in terms of p-systems.

Theorem 2.14. Let G1 and G2 be sub-� -algebras of F and suppose C1 and C2 are p-systems that generate G1 and G2,
namely

�.Ci / D Gi i D 1; 2:

Then G1 and G2 are independent if and only if C1 and C2 are, i.e.

P.C1 \ C2/ D P.C1/P.C2/ 8C1 2 C1; C2 2 C2:

15



Two random variables X1 and X2 are independent if �.X1/ and �.X2/ are independent. They are independent if
and only if Ef1.X1/f2.X2/ D Ef1.X1/Ef2.X2/ for all positive measurable functions f1 and f2, if and only if their
joint distribution is the product of their marginal distributions, i.e. FX1;X2.x1; x2/ D FX1.x1/FX2.x2/. We can also
extend these (equivalent) definitions to more than two random variables.

If X1 and X2 are independent, and f1 and f2 are measurable functions, then Y1 D f1.X1/ and Y2 D f2.X2/

are independent. This follows from the fact that �.Yi / � �.Xi / for i D 1; 2, so independence of �.X1/ and �.X2/
implies independence of �.Y1/ and �.Y2/.

2.7 Convolutions

In probability theory, the probability distribution of the sum of two or more independent random variables is the
convolution of their individual distributions. The term is motivated by the fact that the probability density function of
a sum of independent random variables is the convolution of their corresponding probability density functions.

Let X and Y be independent random variables taking values in R, with PX and PY denoting their respective
probability distributions. Moreover, with H 2 B.R/ define B D f.x; y/ W x C y 2 H g � R2, one has

PXCY .H/ D PfX C Y 2 H g D

Z
B

dPX;Y D

Z
B

dPXdPY

D

Z
R

Z
fyWxCy2Hg

dPY dPX

D

Z
R

PY fH � xgdPX :

Given two probability measures P1 and P2 on R, the convolution of P1 and P2 is a new probability measure defined
as

P1 � P2.H/ D

Z
R

P1fH � xgdP2 8H 2 B.R/:

Hence if X and Y are independent then

PXCY D PX � PY D PY � PX :

� If PX � � and PY � � with p D dPX=d�, q D dPY =d�, then

PXCY .H/ D

Z
R
p.x/

Z
H

q.y � x/d�d�:

� If H D .�1; z� then

FXCY .z/ D PfX C Y � zg D

Z
R
FY .z � x/dPX :

� If PX � �L and PY � �L with respective densities p D dPX=d�L, q D dPY =d�L, then

FXCY .z/ D

Z C1
�1

Z z�x

�1

q.y/dyp.x/dx D

Z C1
�1

Z z

�1

q.y � x/dyp.x/dx

D

Z z

�1

Z C1
�1

q.y � x/p.x/dxdy:

This implies that PXCY � �L and

p�.z/ D
dPXCY
d�L

.z/ D F 0XCY .z/ D

Z C1
�1

q.z � x/p.x/dx:
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Example 2.15. Using the convolution formula, we can determine distributions of sum of common independent random
variables. For example, calculations show that

(1) The sum of two uniformly distributed random variables on Œ0; 1� with density 1Œ0;1� has density z1Œ0;1�.z/C .2�
z/1.1;2�.z/, the so-called triangular distribution;

(2) The sum of two independent Poisson random variables with parameter �1 and �2 is another Poisson random
variable with parameter �1 C �2;

(3) The sum of two independent Gamma random variables with parameters .˛1; ˇ/ and .˛2; ˇ/ is another Gamma
random variable with parameter .˛1 C ˛2; ˇ/;

(4) See more examples at: https://en.wikipedia.org/wiki/List_of_convolutions_of_probability_
distributions.

2.8 Borel-Cantelli Lemmas

Kolmogorov’s 0-1 law states that an tail event corresponding to a sequence of independent variables will either almost
surely happen or almost surely not happen; that is, the probability of such an event occurring is zero or one.

Definition 2.16. Let fGngn�1 be a collection of sub-� -algebras of F and Tn D �
�S

m�n Gm
�
. Then

T D
\
n�1

Tn

is called the tail � -algebra.

A typical case is where fXngn�1 is a sequence of random variables:

Gn D �.Xn/) Tn D �.Xn; XnC1; : : :/) T D
\
n�1

�.Xn; XnC1; : : :/:

Tail events are precisely those events whose occurrence can still be determined if an arbitrarily large but finite initial
segment of the fXngn�1 are removed. Examples aren

lim
n!1

Sn=n D 0
o
;

(
1X
nD1

Xn converges

)
;
n

lim
n!1

Xn exists
o
; fXn 2 B i.o.g :

On the other hand, events like fSn 2 B i.o.g and flim supn Sn > bg are not in T since they depend on all the
X1; X2; : : :.

Theorem 2.17 (Kolmogorov’s 0-1 law). Let fGngn�1 be a sequence of independent sub-� -algebras of F and T the
corresponding tail � -algebra. Then

H 2 T ) P.H/ 2 f0; 1g:

The Borel-Cantelli lemmas provide sufficient conditions for almost sure convergence. Recall the following defini-
tions:

Definition 2.18. Let fAngn�1 be a sequence of events in F . We define

lim sup
n!1

An D
\
N�1

[
n�N

An D fAn occur i.o.g;

lim inf
n!1

An D
[
N�1

\
n�N

An D fAn occur for all but finitely many n’sg:
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It is easy to check that

lim sup
n!1

An D

8<:! 2 � WX
n�1

1An.!/ D C1

9=; : (6)

The Borel-Cantelli lemmas provide us sufficient conditions to evaluate P on such limits of events. From this perepec-
tive, the lemmas can be seen as providing conditions to determine if P.H/ D 0 or P.H/ D 1 in Kolmogorov’s 0-1
law.

Lemma 2.19 (First Borel–Cantelli lemma). Let fAngn�1 be a sequence of events in F such that
X
n�1

P.An/ < 1.

Then

P

�
lim sup
n!1

An

�
D 0:

Proof. Let GN D
S
n�N An, so that

lim
N!1

GN D
\
N�1

[
n�N

An D lim sup
n!1

An:

Since lim supAn � GN , we have

0 � P

�
lim sup
n!1

An

�
� P ŒGN � D P

24[
n�N

An

35 � X
n�N

P ŒAn�:

As N !1, the last term goes to zero, so we are able to conclude the proof.

In view of Eq. (6), the first Borel-Cantelli lemma saysX
n�1

P.An/ <1 )

X
n�1

1An <1 almost surely;

which is straightforward since this amounts to saying that EN <1) N <1 almost surely, whereN D
P
n�1 1An .

Theorem 2.20 (Second Borel–Cantelli lemma). If fAngn�1 is a sequence of independent events in F such thatX
n�1

P.An/ D1, then

P

�
lim sup
n!1

An

�
D 1:

Proof. We prove the equivalent statement that P Œ.lim supAn/c � D P
�
lim infAcn

�
D 0. Using the fact that 1�x � e�x

for any x > 0, we obtain

P

"
NCj\
nDN

Acn

#
D

NCjY
nDN

P.Acn/ D
NCjY
nDN

f1 � P.An/g � e
�
PNCj
nDN

P.An/

for any j � 1. Since
P
n P.An/ diverges, we have

P

24\
n�N

Acn

35 D lim
j!1

P

"
NCj\
nDN

Acn

#
� lim
j!1

e�
PNCj
nDN

P.An/ D 0:

Hence

P
�
lim infAcn

�
�

X
N�1

"
NCj\
nDN

Acn

#
D 0:
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Example 2.21. Here we record the example of Riemann zeta function. See the lecture notes for the coin tossing

example. Let �.s/ D
1X
nD1

n�s for s > 1. Let X be a random variable taking valued in N D f1; 2; : : :g such that

PfX D xg D
x�s

�.s/
1N.x/:

Let … denote the set of primes in .1;C1/ and for any p 2 … define Ep D
S
n�1fX D npg. Then

P.Ep/ D p
�s

P
n�1 n

�s

�.s/
D p�s :

Note that fEpgp2… is a collection of independent events, since for any k � 2 and choice of p1 ¤ � � � ¤ pk we have

P.Ep1 \ � � � \Epk / D
X
n�1

PfX D np1 � � �pkg D .p1 � � �pk/
�s
D P.Ep1/ � � �P.Epk /:

We can then derive

P

24\
p2…

Ecp

35 D Y
p2…

P
�
Ecp
�
D

Y
p2…

.1 � p�s/:

Thus

PfX D 1g D
1

�.s/
D P

24\
p2…

Ecp

35 D Y
p2…

.1 � p�s/:

This leads to the Euler formula:
�.s/ D

1Q
p2….1 � p

�s/
:

Finally, since X
p2…

P ŒEp� D
X
p2…

p�s < �.s/ < C1;

the first Borel-Cantelli lemma implies that PfEp i.o.g D 0. On the other hand, since events in fEcpg are independent
and X

p2…

P ŒEcp � D
X
p2…

.1 � p�s/ D C1;

the second Borel-Cantelli lemma implies that PfEcp i.o.g D 1.

2.9 Convergence

Let fXng1nD1 be a sequence of real-valued random variable. Recall the four definitions of convergence:

� Almost sure convergence:
P
n

lim
n!1

Xn D X
o
D 1:

Using the notion of the limit inferior of a sequence of sets, almost sure convergence can also be defined as
follows:

P
�

lim inf
n!1

˚
! 2 � W jXn.!/ �X.!/j < "

	�
D 1 for all " > 0:

Almost sure convergence implies convergence in probability (by Fatou’s lemma), and hence implies convergence
in distribution. It is the notion of convergence used in the strong law of large numbers.

There is no topology on the space of random variables such that the almost surely convergent sequences are
exactly the converging sequences with respect to that topology. In particular, there is no metric of almost sure
convergence.
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� Convergence in probability: for any " > 0

lim
n!1

P fjXn �X j > "g D 0:

Convergence in probability implies convergence in distribution. In the opposite direction, convergence in distri-
bution implies convergence in probability when the limiting random variable X is a constant.

Convergence in probability defines a topology on the space of random variables over a fixed probability space.

Convergence in probability to X implies there exists a sub-sequence fXnk g which almost surely converges to
X .

� Convergence in Lp:
lim
n!1

EjXn �X j
p
D 0:

Convergence in Lp , for p � 1, implies convergence in probability (by Markov’s inequality). Furthermore, if
p � q � 1, convergence in Lp implies convergence in Lq .

� Convergence in distribution:
lim
n!1

Fn.x/ D F.x/

for all x 2 R at which F is continuous. Namely,

– PfXn � xg ! PfX � xg for all continuous points of x 7! PfX � xg.

According to the portmanteau lemma, this is equivalent to:

– Ef .Xn/! Ef .X/ for all bounded, continuous functions f ;

– Ef .Xn/! Ef .X/ for all bounded, Lipschitz functions f ;

– lim inf Ef .Xn/ � Ef .X/ for all nonnegative, continuous functions f ;

– lim inf PfXn 2 Gg � PfX 2 Gg for every open set G;

– lim sup PfXn 2 F g � PfX 2 F g for every open set F ;

– : : : : : :

For this reason, convergence in distribution is also referred to as weak convergence.

The Lévy’s continuity theorem established that Xn
d
�! X if and only if the characteristic functions f'ng con-

verges pointwise to ' of X .

Note that convergence in distribution of fXng to X and fYng to Y does in general not imply convergence in
distribution of fXn C Yng to X C Y or of fXnYng to XY .

Theorem 2.22 (Continous mapping theorem). Let g be a continuous function. Then

Xn
d
�! X ) g.Xn/

d
�! g.X/I (7)

Xn
p
�! X ) g.Xn/

p
�! g.X/I (8)

Xn
a.s.
�! X ) g.Xn/

a.s.
�! g.X/: (9)

The chain of implications between the various notions of convergence is summarized as:

Lp
��! H)

p>q�1

Lq
��!

+

a.s.
�! H)

p
�! H)

d
�!
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Let’s return back to the Lévy’s continuity theorem. It can transfer the proof of convergence in distribution of
something to convergence of their characteristic functions. We should immediately come up with the idea that we can
use the theorem to prove the Central Limit Theorem, which is a theorem about convergence in distribution.

Theorem 2.23 (Central Limit Theorem). If fXng1nD1 is a sequence of i.i.d. random variables with EXn D � and
Var.Xn/ D �2 <1, then

Zn D
Sn � n�

�
p
n

d
�! Z

where Z � N.0; 1/.

Proof. For a characteristic function 'X , we have the property (you can derive this informally by deferentiating the
formula 'X .t/ D EeitX )

'
.k/
X .0/ D ikEXk :

In particular, if X has mean � and variance �2, then

'0X .0/ D iEX D �; '00X .0/ D i
2EX2 D ��2 � �2:

Let ' denote the characteristic function of the random variable .Xn ��/=� , which has mean 0 and variance 1, so that

'0.0/ D 0; '00.0/ D �1:

A second order Taylor expansion of ' yields

'.t/ D '.0/C '0.0/t C
'00.0/

2
t2 C "t D 1 �

t2

2
C "t

with limt!1.j"t j=t
2/ D 0. Using the independence of Xn’s, one has

EeitZn D

�
Ee

it Xn��
�
p
n

�n
D
�
'.t=
p
n/
�n
:

For n large enough, t=
p
n � 0 and so

EeitZn D

�
1 �

t2

2n
C "t=

p
n

�n
! e�t

2=2 as n!C1:

Theorem 2.24 (Law of Large Numbers). If fXng1nD1 is a sequence of pairwise independent and identically distributed
random variables with EXn D � and Var.Xn/ D �2 <1, then

NXn
L2
��! �; NXn

p
�! �; NXn

a:s:
��! �:

Proof. Since E NXn D � and Var. NXn/ D �2=n, we have

k NXn � �k
2
2 D Ej NXn � �j

2
D Var. NXn/! 0 as n!1;

which entails NXn
L2
��! � and a fortiori NXn

p
�! �. To show almost sure convergence, we assume without loss of

generality that Xn � 0. Let nk D k2 and by Chebychev’s inequality

1X
kD1

P
˚
j NXnk � �j > "

	
�
�2

"2

1X
kD1

1

k2
< C1;
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so by the first Borel-Cantelli lemma
P
˚
j NXnk � �j > " i.o.

	
D 0:

This means NXnk
a:s:
��! � as k !1. Hence, there exists �0 2 F with P.�0/ D 1 such that

NXnk .!/! � for all ! 2 �0:

There is a lemma in analysis that says if for a subsequence fxnk g in fxng such that nkC1=nk ! r � 1 as k !1 and
limk!1 Nxnk D x, then x=r � lim infn Nxn � lim supn Nxn � rx. Using the lemma, we have

� � lim inf
n
NXn.!/ � lim sup

n

NXn.!/ � � 8! 2 �0;

which implies that limn!1
NXn D � on �0.

See the lecture notes for application of Law of Large Numbers in proving the Weierstrass approximation theorem.

2.10 Conditional Expectations

Let .�;F ;P/ be a probability space, let H be a sub-� -algebra of F and let X be a random variable with finite
expectation. We would like to obtain an representation (approximation) of X in terms of H , but X may not be H -
measurable. A conditional expectation ofX given H , denoted as E.X jH /, is any H -measurable random variable that
satisfies Z

H

E.X jH /dP D

Z
H

XdP 8H 2 H : (10)

Namely, the values of E.X jH / are “defined” as averages of X on various elements in H . Note that Eq. (10) is
equivalent to requiring that EV E.X jH / D EVX for any H -measurable random variable V . The existence of E.X jH /

can be established by the following. First assume X � 0 (for generalization work on X D XC � X�). Note that
�X W A 7!

R
A
XdP for A 2 F defines a finite measure on .�;F /. Let h be the natural injection from H to F , so that

�X ı h D �X jH is the restriction of �X to H and P ı h D P jH is the restriction of P to H . Furthermore, �X jH is
absolutely continuous with respect to P jH because P jH .H/ D P ıh.H/ D 0 implies that �X .h.H// D �X jH .H/ D
0. Thus, by the Radon-Nikodym theorem, there exists a function d�X jH=dPH W �! RC such that

�X jH .H/ D

Z
H

XdP D

Z
H

�
d�X jH

dPH

�
dP jH 8H 2 H :

We thus see that the conditional expectation is exactly this Radon-Nikodym derivative.
IfX 2 L2.�;F ;P/, we can define the subspace K D L2.�;H ;P/ and use the theorem on orthogonal projection

to conclude that there exists Y 2K such that

kX � Y k2 D inf
W 2K

kX �W k2 and hX � Y;W i D 0 8W 2K:

Taking 1H 2K for any H 2 H , we get

0 D hX � Y; 1H i D

Z
H

.X � Y /dP

so that Z
H

YdP D

Z
H

XdP 8H 2 H :

We see that this Y is a version of E.X jH /. In this case, the conditional expectation of X given H is the orthogonal
projection of X onto K D L2.�;H ;P/.

Here are several properties of conditional expectation:
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� For H D f¿; �g, the conditional expectation is the constant EX , and for H D F , the conditional expectation
is X itself.

� Since � 2 H , we have Z
�

E.X jH / D

Z
�

XdP ) EE.X jH / D EX;

which is the law of iterated expectations.

� If X is H -measurable, then E.X jH / D X almost surely.

� Linearity: E.aX C bY jH / D aE.X jH /C bE.Y jH /.

� Monotonicity: if X � Y almost surely then E.X jH / � E.Y jH / almost surely.

� Monotone convergence: if 0 � Xn " X , then E.XnjH / " E.X jH / almost surely.

� Dominated convergence: If Xn
a:s:
��! X and jXnj � Y for some Y with EjY j < C1, then E.XnjH /

a:s:
��!

E.X jH /.

� Towering property: if H � G , then EŒEŒX jH �jG � D EŒEŒX jG �jH � D EŒX jH �.
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Part II

Stochastic Process



3 Martingales

Let .�;H ;P/ be a fixed probability space in the background, and let T be some time index set.

3.1 Filtrations and Stopping Times

A filtration F D .Ft /t2T on T is an incresing family of sub-� -algebras of H , i.e. Ft � Ft 0 whenever t < t 0. For a
stochastic process X D .Xt /t2T , the filtration generated by X is F D .Ft /t2T with Ft D �fXs W s � tg. X is said
to be adapted to F if Xt is Ft -measurable for each t .

Definition 3.1. Let F D .Ft /t2T be a filtration on T . A random variable T W �! T [ fC1g is called a stopping
time of F if

fT � tg 2 Ft 8t 2 T : (11)

Be aware that both of the sets fT � tg and Ft increase in their size as t increases. Eq. (11) is equivalent to
requiring that the process Z D .Zt /t2T with Zt D 1fT�tg be adapted to F , and for T D N this is also equivalent to
requiring that Z D .Zt /t2T with Zt D 1fTDng be adapted to F .

Example 3.2. Let T D N, let X D .Xn/n2N be a process and consider

T D inf fn 2 N W Xn 2 Ag :

T is called the first entrance to A. It is a stopping time because

fT � ng D

n[
kD0

fXk 2 Ag 2 Fn

since each set in the union is in Fn. The information fT � ng at each n can be determined by information of
X D .Xn/n2N up to n, instead of having to resort to future information.

Example 3.3 (Counting Process). Let 0 < T1 < T2 < � � � be some random times taking values in RC and assume
Tn !C1. Define

Nt D

1X
nD1

1Œ0;t� ı Tn; t 2 RC:

We imagine that for each ! 2 �, a sequence of time is determined and Nt “expands” the positive real axis to
infinity and counts the occurance time it encountered along the way. If F D .Ft /t2RC is the filtration generated by
N D .Nt /t2RC , then it is obvious that every occurence time Tn is a stopping time of F . Indeed,

fTn � tg D fNt � ng 2 Ft 8t 2 RC:

Another stopping time is T D infft � a W Nt D Nt�ag, namely the first time that an interval of length a passed
without an arrival.

Let F be a filtration on T and let T be a stopping time of it. We define1

FT D fH 2 H W H \ fT � tg 2 Ft 8t 2 NT g (12)

1To tackle the case that T.!/ may beC1 for some !, we define F1 as �.
S
t2T Ft /, the � -algebra generated by the union of all the Ft .
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as the past until T . It is a sub-� -algebra of H on �. Note that if T � t0 is a fixed constant, then fT � tg D ft0 � tg
is ¿ when t < t0 and it is � when t � t0. Remembering Ft0 � Ft for all t � t0, we see that FT D Ft0 in this case.
Also note that fT � sg 2 FT for each s � 0, because fT � sg \ fT � tg D fT � s ^ tg 2 Ft for any t . This shows
that T is FT -measurable.

If a positive random variable V is FT -measurable, then fV > sg 2 FT for any s � 0. By Eq. (12), this means
fV > sg \ fT � tg D fV 1fT�tg > sg 2 Ft for all t 2 T . In other words, the random variable V 1fT�tg should be
Ft -measurable for any t 2 T . This is the content of the following theorem in the book.

Theorem 3.4. A random variable V belongs to FT if and only if

V 1fT�tg 2 Ft

for every t 2 NT . In particular, if T D N, then the condition is equivalent to requiring that

V 1fTDng 2 Fn 8n 2 NN:

In the book, the author identifies a filtration F D .Ft / with the collection of all stochastic processes X such that

1. X D .Xt / is adapted to F D .Ft /;

2. t 7! Xt .!/ is right-continuous for each ! 2 �.

Then we can identify FT as the set of values (random variables) of all processes X in F at time T , i.e. FT D fXT W

X 2 F g.

Theorem 3.5. Let S and T be stopping times of F . Then

1. S ^ T and S _ T are stopping times of F ;

2. if S � T then FS � FT ;

3. in gengeral, FS^T D FS \ FT ;

4. if V 2 FS then the following are in FS^T :

V 1fS�T g; V 1fSDT g; V 1fS<T g:

Proof. You shoule be able to work out the proof yourself, following items 1, 2, 4 and finally 3. Or see page 177 in the
book.

Definition 3.6. We define ET as the conditional expectation operator based on the � -algebra FT , i.e. ET WD E.�jFT /.

Borrowing this notation, we use Et to mean E.�jFt /, the conditional expectation given the � -algebra Ft .

Theorem 3.7. The following hold for all positive random variables X; Y;Z and for all stopping times S and T of F :

1. Y D ETX if and only if Y 2 FT and EVX D EV Y for every positive V 2 FT .

2. EETX D EX .

3. ESETX D ES^TX .

4. ET .X C YZ/ D X C YETZ if X; Y 2 FT .
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3.2 Martingales

Definition 3.8. A real-valued stochastic process X D .Xt /t2T is called an F -submartingale if X is adapted to F ,
EjXt j < C1 for each t , and

Es.Xt �Xs/ � 0 8t > s:

It is an F -supermartingale if
Es.Xt �Xs/ � 0 8t > s:

It is an F -martingale if
Es.Xt �Xs/ D 0 8t > s:

Several remarks:

� Let X be an F -submartingale. For u > t > s,

Es.Xu �Xt / D EsEt .Xu �Xt / � Es0 D 0;

so that any remote future increment is also positive.

� When T D N, the condition for martingale is equivalent to

En.XnC1 �Xn/ D 0; 8n 2 N:

� In fact, X is a martingale if EXt D EX0 for all times t .

Example 3.9. Here are two basic examples of martingales.

1. Let X1; X2; : : : be independent random variables with mean 0, and put S0 D 0. Then Sn D S0CX1C� � �CXn
is a martingale adapted to the filtration generated by itself, since En.SnC1 � Sn/ D EnXnC1 D EXnC1 D 0.

2. Similarly, if R1; R2; : : : are independent random variables all with mean 1 and finite variance, then Mn D

M0R1R2 � � �Rn with M0 D 1 is a martingale adapted to the filtration generated by itself, since EnMnC1 D

EnMnRnC1 DMnEnRnC1 DMnERnC1 DMn.

Theorem 3.10. Let Z be an integrable random variable. Define

Xt D EtZ

for t 2 T . Then X D .Xt /t2T is an F -martingale and is uniformly integrable.

Proof. Adaptedness is immediate, eachXt is integrable, and the martingale property is EsXt D EsEtZ D EsZ D Xs
for s < t . For uniform integrability, the proof in the book used a proposition that says C is uniformly integrable if and
only if supX2C Ef .jX j/ <1 for some increasing convex function such that limx!1 f .x/=x D 1 (page 74). But it
should be intuitively clear that fXtgt2T is uniformly integrable.

Wiener process and Poisson process are two processes that have stationary and independent increments.

Definition 3.11. Put W0 D 0. The continuous process W D .Wt /t2RC is called a Wiener process with respect to F

if it is adapted to F and

Esf .WsCt �Ws/ D
1
p
2�t

Z
R
f .x/e�x

2=2tdx

for all s; t 2 RC and all positive Borel functions on R.
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Theorem 3.12. W is Wiener with respect to F if and only if it is continuous and

1. W is an F -martingale, and

2. Y D .W 2
t � t /t2RC is an F -martingale.

Proof of neccessity. If W is Wiener, then each Wt is normal with mean 0 and variance t . For s < t , the increment
Wt �Ws is independent of Fs and so Es.Wt �Ws/ D E.Wt �Ws/ D 0. To show the second process is a martingale2,
we note that

Yt � Ys D .Wt �Ws/
2
C 2Ws.Wt �Ws/ � .t � s/

so that
Es.Yt � Ys/ D E.Wt �Ws/

2
C 2WsE.Wt �Ws/ � .t � s/ D .t � s/ � .t � s/ D 0:

Theorem 3.12 signifies ubiquity of normal distribution: if a collection of continuous i.i.d. random variables
fXtgt2RC is such that they have mean EXt D 0 and variance EX2t D t for all t , then it must have a normal dis-
tribution, i.e. it is a Wiener process.

Proposition 3.13. W is a Wiener process with respect to F if and only if, for any r 2 R,

Mt D exp
�
rWt �

1

2
r2t

�
; t 2 RC

is an F -martingale3.

Proof. First recall that, for a normal random variable X � N.�; �2/, its moment-generating function is m.r/ D
EerX D er�C

1
2�
2r2 , so for Wt it is m.r/ D e

1
2 r
2t . If W is Wiener, then for s < t

Es

�
Mt

Ms

�
D Es exp

�
r.Wt �Ws/ �

1

2
r2.t � s/

�
D 1 (13)

so that EsMt D Es
h
Mt
Ms
�Ms

i
D MsEs

h
Mt
Ms

i
D Ms � 1 D Ms . This proves M D .Mt /t2RC is an F -martingale.

Conversely, if M is an F -martingale, then Es.Mt=Ms/ D 1, which means Eq. (13) holds, or equivalently

Es exp fr.WsCt �Ws/g D e
1
2 r
2t :

This proves that W D .Wt /t2RC is Wiener.

A counting process N D .Nt /t2RC is a process with state space .N; 2N/ whose every path t 7! Nt .!/ starts from
N0.!/ D 0, is increasing and right-continuous, and increases by jumps of size one only. Therefore Nt is the number
of jumps in the interval .0; t �.

Definition 3.14. The counting process N is said to be a Poisson process with rate c with respect to F if it is adapted
to F and

Esf .NsCt �Ns/ D
1X
kD0

"
.ct/k

kŠ
e�ct

#
� f .k/ (14)

for all s; t 2 RC and all positive functions f on N.

2The proof is from the book. However, it is easy to see that EsW
2
t D EW 2

t D t , so if we subtract the variance t we get a martingale.
E.W 2

t � t/ D 0 DW0 for all t 2 RC.
3Mt is the moment generating function ofWt , erWt , times its reciprocal.
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With f .k/ D k, we get the mean of NtCs �Ns from Eq. (14): it is E.NtCs �Ns/ D Es.NtCs �Ns/ D ct . Each
Nt is Poisson distributed with mean ct . It turns out that

Theorem 3.15. A counting processN is a Poisson process with rate c if and only if .Nt�ct/t2RC is an F -martingale.

The theorem says, if a (discrete) counting process fNtgt2RC is such that they are independent, and the expectation
ENt D ct grows linearly in t with a single rate c, then only Poisson distribution can be used to describe their
probability laws.

In fact, if N is a Poisson process, then we can substitute s with stopping time S :

ESf .NSCt �NS /1fS<1g D
1X
kD0

"
.ct/k

kŠ
e�ct

#
� f .k/1fS<1g: (15)

Eq. (15) is called strong Markov property for the Poisson process.

Example 3.16. Let S be the first time of an interval of length a passes without a jump, that is

S D infft � a W Nt D Nt�ag:

Let T be the time of first jump after S . Note that the interval that includes S has length aC .T � S/, and for a large,
the raw intuition expects T �S to be small. Instead, noting that fT �S > tg D fNSCt �NS D 0g, we see that T �S
is independent of FS and has the same exponential distribution as if S is a jump time.

3.3 Martingale Transformation and Maxima

Definition 3.17. A process X D .Xn/n2N is said to be F -predictable if XnC1 2 Fn for every n 2 N.

Theorem 3.18. Let X be adapted and integrable. Then it can be decomposed as

Xn D X0 CMn C An; n 2 N; (16)

where M is a martingale with M0 D 0, and A is predictable with A0 D 0. This decomposition is unique up to
equivalence. In particular, ifX is a submartingale, then A is increasing, and ifX is a supermartingale, A is decreasing.

Proof. The way we achieve Eq. (16) is to define M0 D A0 D 0 and define M and A through their increments:

AnC1 � An D En.XnC1 �Xn/; MnC1 �Mn D .XnC1 �Xn/ � .AnC1 � An/

for each n 2 N, so that XnC1 � Xn D .MnC1 �Mn/C .AnC1 � An/ D .MnC1 C AnC1/ � .Mn C An/) Xn D

X0 CMn C An.

Let M D .Mn/ and F D .Fn/ be real-valued stochastic processes and define

Xn D F0 �M0 C F1 � .M1 �M0/C � � � C Fn � .Mn �Mn�1/; n 2 N:

The X D .Xn/ is called the integral of F with respect to M , or the transform of M by F , and we write

X D

Z
FdM:

If F � 1, thenXn is justMn. From another perspective, F is like a (random) function on N, andM is like a (random)
(signed) measure on N, with mass .Mn �Mn�1/ at n. Thus we can also write

Xn D

Z
Œ0;n�

FdM:
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Theorem 3.19. Let F be a bounded predictable process and let X D
R
FdM . If M is a martingale, then so is X . If

M is a submartingale and F is positive, then X is a submartingale.

Proof. X is adapted to F because F and M are. Since F is bounded, say by b > 0, jXnj � b � .jM0j C � � � C jMn �

Mn�1j/, which is integrable, so X is integrable. Finally,

En.XnC1 �Xn/ D FnC1 � En.MnC1 �Mn/ D FnC1 � 0 D 0

so that X D .Xn/ is a martingale.

Example 3.20. Let S and T be stopping times of F with S � T (they take values in NN). Let V 2 FS . Then the
following processes

V 1.S;T �; V 1.S;1�; 1.S;T �; 1Œ0;T �

are all predictable processes. Start with the second one:

� Let Xn D V � 1.S;1�.n/ D V � 1fS<ng.!/. If we know the value of Xn, plus information of the stopping time
(recall fS � ng 2 Fn) at time n, then can know the value of XnC1 D V � 1fS<nC1g.!/ D V � 1fS�ng.!/, i.e.
XnC1 2 Fn. Note that fS < n C 1g D fS � ng because S can only take integer values. Thus, V 1.S;1� is
predictable.

� From S � T , we have FS � FT , so that V 2 FT also. Changing S to T , we see V 1.T;1� is also predictable.

� Their difference V 1.S;1� � V 1.T;1� D V 1.S;T � is also predictable.

� Taking V D 1 shows that 1.S;T � is predictable.

� Taking T D1 shows 1.S;1� is predictable.

� Finally 1Œ0;S� D 1 � 1.S;1� is predictable. Alterntatively, 1Œ0;S�.nC 1/ D 1fS�nC1g D 1fS<nC1gc D 1fS�ngc

and since fS � ng 2 Fn we have fS � ngc 2 Fn also.

Definition 3.21. Let M D .Mn/ be a process. Let T 2 NN be a random time. Then the process X defined by

Xn.!/ DMn^T.!/.!/ D

8<:Mn.!/ if n � T .!/;

MT.!/.!/ if n > T .!/

is called the process M stopped at T .

Observe that X is a “transform” of M , and indeed we can express X as the integral

X D

Z
1Œ0;T �dM D

Z
Œ0;T �

dM

so that
Xn D

Z
Œ0;n�\Œ0;T �

dM D

Z
Œ0;n^T �

dM DMn^T :

Thus, from Theorem 3.19, if M is a martingale, then so is the martingale stopped at T .

Theorem 3.22 (Doob’s stopping theorem). Let M be adapted to F . The following are equivalent:

1. M is a submartingale;

2. For every pair of bounded stopping time S � T , MS and MT are integrable and

ES .MT �MS / � 0:
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3. For every pair of bounded stopping time S � T , MS and MT are integrable and

E.MT �MS / � 0:

We now want to define the notion of crossings of an interval .a; b/ 2 R by some process M . Put T0 D �1 for
convenience and for each k � 1 define

Sk D inffn > Tk�1 WMn � ag; Tk D inffn > Sk WMn � bg;

the downcrossing times and upcrossing times. Then

Un.a; b/ D

1X
kD1

1.0;n� ı Tk D 1.0;n�.T1/C 1.0;n�.T2/C � � �

is the number of upcrossings of .a; b/ during Œ0; n�. The following inequality will be used to prove the martingale
convergence theorem.

Proposition 3.23. If M is a submartingale, then

.b � a/EUn.a; b/ � EŒ.Mn � a/
C
� .M0 � a/

C�

Proof. An upcrossing of .a; b/ by M is the same as an upcrossing of .0; b � a/ by .M � a/C, and the later us again
a submartingale, so we may assume a D 0 and M � 0. Let Fn D

P1
kD1 1.Sk ;Tk �.n/ for n � 1 and put F0 D 0.

Note Fn 2 f0; 1g with Fn D 1 if n 2 .Sk ; Tk � for some particular k and 0 otherwise. Let X D
R
FdM . Since F is

predictable, we have FkC1 2 Fk , so

Ek.XkC1 �Xk/ D EkFkC1 � .MkC1 �Mk/ D FkC1Ek.MkC1 �Mk/ � Ek.MkC1 �Mk/:

Taking expectations on bothe side and summing over k:

E.Xn �X0/ � E.Mn �M0/:

On the other hand, bUn.0; b/ � Xn �X0. The justification is to view M D .Mn/ as stock price, and so Xn is like the
total profit if you buy one share when M hits 0 and sell the share when it goes above b during Œ0; n�, which is larger
than b times total number of upcrossings in the interval Œ0; n�. Thus

bEUn.0; b/ � E.Xn �X0/ � E.Mn �M0/:

The following inequalities on maxima and minima should be more or less obvious. Let S D fmaxk�nMk �

bg � �. Note P.S/ D E1S and the inequality says b � P.S/ D E b � 1S � EMn � 1S . The submartingale fMng has a
tendency to increase, so on the domain S , Mn should be close to or larger than b, i.e. b � EMn over that domain, and
this is exactly what the inequality says.

Theorem 3.24. Let M D .Mn/ be a process adapted to F . Suppose M is a submartingale, then for b > 0,

bPfmax
k�n

Mk � bg � EMn1fmax
k�n

Mk�bg � EMCn ;

bPfmin
k�n

Mk � �bg � EMn1fmin
k�n

Mk>�bg � EM0 � EMCn � EM0:
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Proof. Define the stopping times

T D inffn � 0 WMn � bg; S D inffn � 0 WMn � �bg;

so that �
max
k�n

Mk � b

�
D fT � ng;

�
min
k�n

Mk � �b

�
D fS � ng:

Note that on fT � ng, we have b �MT DMT^n, so

b1fT�ng �MT^n1fT�ng � .ET^nMn/1fT�ng D ET^nMn1fT�ng;

where the second inequality is Doob’s submartingale inequality and the last equality is because fT � ng 2 FT^n.
Taking expectations on both sides yields the desired inequality. Note that since Mn � M

C
n and 1fmaxk�nMk�bg � 1,

the second inequality EMn1fmaxk�nMk�bg � EMCn is obvious.
On fS � ng, we have MS � �b, so that

MS^n DMS1fS�ng CMn1fS>ng � �b1fS�ng CMn1fS>ng:

Taking expectations on both side and noting that EM0 � EMS^n by Doob’s martingale inequality, we get the desired
result.

If M is a martingale, thenjM jp is a submartingale for p 2 Œ1;1/. Apply the above theorem to jM jp we get a
generalization of Kolmogorov’s inequality:

Corollary 3.25. Let M be a martingale in Lp for some p 2 Œ1;1/. Then, for b > 0,

bpP

�
max
k�n
jMkj > b

�
� EjMnj

p:

Theorem 3.26. Let M be a martingale in Lp for some p > 1, with 1=p C 1=q D 1. Then

E max
k�n
jMkj

p
� qpEjMnj

p:

Proof. Fix n and introduce Z D maxk�n jMkj. We want to show

EZp � qpEjMnj
p:

We have

Zp D

Z Z

0

pxp�1dx D

Z 1
0

pxp�2x1fZ�xgdx

and by Theorem 3.24,
E x1fZ�xg � EjMnj � 1fZ�xg;

so
EZp � EjMnj

Z 1
0

pxp�21fZ�xgdx:

Note that Z 1
0

pxp�21fZ�xgdx D

Z Z

0

p � 1

p � 1
pxp�2dx D

p

p � 1

Z Z

0

.p � 1/xp�2dx D qZp�1;

so with p � 1 D p=q,

EZp � EjMnjqZ
p�1
� q

�
EjMnj

p

�1=p�
EZp

�1=q
from Hölder’s inequality. Solving for EZp we have�

EZp
�1�1=q

D

�
EZp

�1=p
� q

�
EjMnj

p

�1=p
) EZp � qpEjMnj

p:
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3.4 Martingale Convergence

Theorem 3.27 (Martingale convergence theorem). Let X D fXng1nD0 be a submartingale. If

sup
n

EXCn <1; (17)

then X D fXng1nD0 converges almost surely to an integrable random variable.

Proof. First note that
EXCn � EjXnj D 2EX

C
n � EXn � 2EX

C
n � EX0 (18)

so Eq. (17) is equivalent to requiring that X D fXng be L1 bounded, i.e. supn EjXnj <1.
If, for an outcome !, the sequence fXn.!/g does not have a limit, then we can pick two rationals lim infXn.!/ �

a < b � lim supXn.!/ such that the sequence upcross .a; b/ infinitely often, i.e. U.a; b/ D 1 where U.a; b/ D
limn!1 Un.a; b/.Thus, to show limXn exists almost surely, we can show for any pair of rationals with a < b, one
has U.a; b/ <1 almost surely.

Fix a < b. By Proposition 3.23,

.b � a/EU.a; b/ D .b � a/ lim
n!1

EUn.a; b/ � sup E.Xn � a/
C
� sup EXCn C jaj <1

where we used the monotone convergence theorem in the first equality. Thus, U.a; b/ < 1 almost surely. It follows
that X1 D lim

n!1
Xn exists almost surely. By Fatou’s lemma

EjX1j D E lim inf jXnj � lim inf EjXnj � 2 sup
n

EXCn � EX0 <1

so X1 is integrable.

Theorem 3.28. Let X be a submartingale. Then X converges almost surely and in L1 if and only if it is uniformly
integrable. Moreover, setting X1 D limXn extends X to a submartingale NX D .Xn/n2 NN.

Proof. Theorem III.4.6. (p106) in the book says a sequence fXng of random variables converges in L1 if and only if
it converges in probability and is uniformly integrable. So if X converges almost surely and in L1, then it is uniformly
integrable. On the other hand, if it is uniformly integrable, then it is L1-bounded, so we can use Theorem 3.27 to
conclude that it converges almost surely, and also in L1 by Theorem III.4.6. again.

Theorem 3.29. A process M D .Mn/n2N is a uniformly integrable martingale if and only if

Mn D EnZ; n 2 N (19)

for some integrable random variable Z. If so, it converges almost surely and in L1 to the integrable random variable

M1 D E1Z (20)

and NM D .Mn/n2 NN is again a uniformly integrable martingale.

Proof. If M has the form Eq. (19), then it is uniformly integrable by Theorem 3.10.
If M is uniformly integrable, then Theorem 3.28 shows it converges almost surely and in L1 to some integrable

random variable M1 and that NM D .Mn/n2 NN is again a martingale. Define Z D M1 so that by the martingale
property for NM one has Mn D EnM1.

Corollary 3.30. For every integrable random variable Z,

EnZ ! E1Z

almost surely and in L1.

33



We can use the above corollary to give a proof to Kolmogorov’s 0-1 law.

Theorem 3.31 (Kolmogorov’s 0-1 law). Let fGngn�1 be a sequence of independent sub-� -algebras of F and T the
corresponding tail � -algebra. Then

H 2 T ) P.H/ 2 f0; 1g:

Proof. By Corollary 3.30, for every event H ,

En1H ! E11H

almost surely. When H 2 T , since T is independent of Gn, we have En1H D E1H D P.H/. On the other hand,
since Gn � G1 for every n, we have T � G1 (see Definition 2.16), which implies that E11H D 1H . This implies
that P.H/ is either 0 or 1.
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4 Poisson Random Measures

Throughout, .E;E/ is a measurable space that is often .R;B.R//. .�;H ;P/ is the probability space in the back-
ground.

4.1 Random Measures

Definition 4.1. A random measure is a measure-valued random variable. Specifically, M W ��E ! NRC is a random
measure if for every left coordinate it is a measure, and for every right coordinate it is a mearuable function (i.e. a
real-valued random variable).

We can also view a random measure as a function M W � ! f� W � W E ! NRCg, from � to the space of all
measures on .E;E/. It is a random counting measure if, for almost every ! 2 �, M! is purely atomic and its every
atom has weight one. Often, we also work with random probability measures, for example in Bayesian statistics.

Here are some notations regarding random measures. For f 2 EC,

M!f WD

Z
E

f .x/dM!

is a (positive) random variable as a function of ! 2 �, and

�.A/ D EM!.A/ D

Z
�

M!.A/dP

defines a measure on .E;E/, called the mean of M , i.e. � D EM . By Fubini’s theorem one has �f D EMf;8f 2

EC.

Proposition 4.2. The probability law of a random measure M is completely determined by the Laplace functional
' W EC ! Œ0; 1� defined by

'.f / D Ee�Mf ; f 2 EC:

Proposition 4.3. If .fn/ � EC is increasing to f , then

lim
n!1

Ee�Mfn D Ee�Mf :

Proof. If fn " f , then M!fn " M!f for each ! 2 � by the monotone convergence theorem, and so e�M!fn "
e�M!f for each ! 2 �. The desired conclusion follows from the bounded convergence theorem.

Proposition 4.4. Two random measures M and N are independent if and only if

Ee�.MfCNg/ D
�
Ee�Mf

� �
Ee�Ng

�
; f; g 2 EC:

Example 4.5. Let X D fXig1iD1 be an independency of random variables taking values in Rn according to some
common distribution �. Let K be independent of X and have Poisson distribution with mean c. Then

M.A/ D

KX
iD1

1A.Xi /; A 2 B.Rn/

defines a random measure, i.e. the measure of A is the count of how much Xi ’s fall in A. The integral of an f W Rn !
RC with respect to M is

Mf D

KX
iD1

f .Xi / D

1X
iD1

f .Xi /1fK�ig:
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The mean of the random variable Mf is

EMf D
1X
iD1

Ef .Xi /E1fK�ig D .�f /EK D c � .�f /;

namely, c times the value Ef .Xi /. To compute the Laplace functional of M , note

e�Mf D e�
PK
iD1 f .Xi / D

KY
iD1

e�f .Xi /:

Because K and fXig are independent, we can first take the expectation of the terms in the product, to get�
Ee�f .X1/

� �
Ee�f .X2/

�
� � �

�
Ee�f .XK /

�
D .�e�f /.�e�f / � � � .�e�f / D .�e�f /K :

Then we take the expectation with respect to K, to get

Ee�Mf D E.�e�f /K D
1X
kD0

ck

kŠ
e�c � .�e�f /k

D

1X
kD0

.c � �e�f /k

kŠ
e�c D ec�e

�f

� e�c

D e�c�.1�e
�f /;

where we recall �.1/ D
R

R d� D 1.

4.2 Poisson Random Measures

First a small note: we extend the definition of Poisson distribution to mean c D 0 and c D 1. For c D 0, X D 0

almost surely and for c D C1, X D C1 almost surely. Recall if X1 and X2 are independent Poisson wih mean c1
and c2, then X1 CX2 is Poisson with mean c1 C c2.

Definition 4.6. Let .E;E/ be a measureable space and let � be a measure on it. A random measure N on .E;E/ is
said to be Poisson with mean � if

1. N.A/ is Poisson distributed with mean �.A/ for every A 2 E;

2. if A1; : : : ; An are disjoint, then N.A1/; : : : ; N.An/ are independent.

As we can see, the random measure in Example 4.5 is exactly a Poisson random measure with mean c�. For a
discrete space like .N; 2N/, we can define a Poisson random measure as followes. Let � be some measure on N and
for each n 2 N let Wn be a Poisson distributed random variable with mean �.fng/. Assume fWng is an independency
and define

N.A/ D
X
n2A

Wn; A � N:

This is a Poisson random measure on N with mean �.
Let’s now do some small computations for a Poisson random measure N on R2 with mean � D c � �L.

1. What is the probability distribution of the distance R from the origin to the nearest atom? R > r if and only if
N.Br / D 0, where Br is the closed disk centered at the origin. Thus

PfR > rg D PfN.Br / D 0g D e
��.Br / D e�c��r

2

; r 2 RC:
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2. Imagine atoms as centers of small disks of radius a. What is the distribution of the distance V from the origin
to the nearest disk along the positive x-axis? We have V > x if and only if N.Dx/ D 0 where Dx D
Œ0; x� � Œ�a; a�. Thus

PfV > xg D PfN.Dx/ D 0g D e
��.Dx/ D e�c�2ax :

It can be calculated that for f 2 EC one has ENf D �f and VarNf D �.f 2/. The first one on mean is clear,
and for the one on variance, we prove as follows:

1. For f D a1A, we have Nf D aN.A/) VarNf D VarŒaN.A/� D a2VarŒN.A/� D a2�.A/ D �.a1A/2.

2. For simple function f D
Pn
iD1 ai1Ai D

Pn
iD1 fi where A1; : : : ; An are disjoint, we have Nf D a1N.A1/C

� � � C anN.An/ so

VarNf D Var Œa1N.A1/C � � � C anN.An/�

D a21VarŒN.A1/�C � � � C a2nVarŒN.An/�

D a21�.A1/C � � � C a
2
n�.An/

D �.a211A1 C � � � C a
2
n1An/:

The last term is equal to f 2, because for i ¤ j , Ai \ Aj D ¿ so fifj D 0) f 2 D f 21 C � � � C f
2
n .

3. For f 2 EC, there exists a sequence of simple functions .fn/ � EC such that fn " f . Using continuity of
f 7! VarNf ,

VarNf D VarN
�

lim
n!1

fn

�
D lim
n!1

VarNfn D lim
n!1

�.f 2n / D �
�

lim
n!1

f 2n

�
D �.f 2/:

Theorem 4.7. N is Poisson with mean � if and only if

'.f / D Ee�Nf D e��.1�e
�f /; f 2 EC: (21)

Proof. Suppose N is Poisson with mean �. For f D a1A with �.A/ <1, we have Nf D a �N.A/ where N.A/ has
Poisson distribution with mean �.A/, so

Ee�Nf D
1X
kD0

�.A/k

kŠ
e��.A/ � e�ak

D

1X
kD0

Œ�.A/ � e�a�k

kŠ
e��.A/

D e�.A/e
�a

e��.A/

D e��.A/.1�e
�a/

D exp f��1A.1 � e
�a/g  integral of 1A times a constant

D exp
n
��.1 � e�a1A/

o
 integral of the function .1 � e�a1A/

D e��.1�e
�f /:

The result remains true even when �.A/ D C1. Next, if f 2 EC is simple, say f D
Pn
iD1 ai1Ai D

Pn
iD1 fi where
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A1; : : : ; An are disjoint, then Nf1; : : : ; Nfn are independent by definition of Poisson random measures, so

Ee�Nf D
nY
iD1

Ee�Nfi D exp
n
��.1 � e�f1/

o
� � � exp

n
��.1 � e�fn/

o
D exp

(
��

 
n �

nX
iD1

e�fi

!)
D exp

n
��

�
1 � e�

Pn
iD1 fi

�o
D exp

n
��

�
1 � e�f

�o
:

The two terms in red are equal because, when x … A1[� � �[An, we have fi D 0 8i D 1; : : : ; n so e�fi D 1 8i D

1; : : : ; n)
Pn
iD1 e

�fi D n) n�
Pn
iD1 e

�fi D 0 and for the second term it is 1� e0 D 1� 1 D 0 also. If x 2 Aj
for some j , then fj D 1 and fi D 0 for i ¤ j , so

Pn
iD1 e

�fi D .n � 1/C fj ) n � Œ.n � 1/C e�fj � D 1 � e�fj ,
which agrees with the second term in this case.

Finally, let f 2 EC be arbitrary. Let .fn/ � EC be a sequence of simple functions such that fn " f . By
Proposition 4.3,

Ee�Nf D Ee
�N lim

n!1
fn
D lim
n!1

Ee�Nfn D lim
n!1

e��.1�e
�fn /:

As n! 1, 1 � e�fn increases to 1 � e�f , and �.1 � e�fn/ increases to �.1 � e�f / due to monotone convergence
theorem. Thus limn!1 e

��.1�e�fn / D e��.1�e
�f /.

The following proposition is quite obvious. Since N has mean �, if �.1E / D �.E/ D C1 then N.1E / D
N.E/ D C1 also. If �.E/ <1 then N.E/ <1 also.

Proposition 4.8. Let N be a Poisson random measure on .E;E/ with mean �. Let f 2 EC.

1. If �.f ^ 1/ D C1, then Nf D C1 almost surely.

2. If �.f ^ 1/ <1, then Nf <1 almost surely.

Theorem 4.9. Let N be a Poisson random measure on .E;E/ with mean � and suppose � is †-finite. Then N is a
random counting measure if and only if � is diffuse.

4.3 Transformations

We remind the reader what is a transition kernel: let .S;S/; .T; T / be two measurable spaces. A function

� W S � T ! Œ0;C1�

is called a transition kernel if

1. fix the left coordinate, you get a measure on .T; T /;

2. fix the right coordinate, you get a measurable function.

A transition probability kernel is a transition kernel such that �.s; �/ 2 Œ0; 1� is a probability measure on T for every
s 2 S .

Theorem 4.10. Let X D fXi W i 2 I g be a collection of random variables that form a Poisson random measure N
with mean � on .E;E/, and let Y D fYi W i 2 I g be a collection of random variables taking values in .F;F /. Let
Q W E � F ! Œ0; 1� be a transition probability kernel from .E;E/ to .F;F /. If given X , the variables fYig are
conditionally independent and have the respective distribution Q.Xi ; �/, then
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1. Y forms a Poisson random measure on .F;F / with mean �Q;

2. .X; Y / forms a Poisson random measure on .E � F;E ˝ F / with mean � �Q.

We remind the reader that � �Q is the product measure on E �F , i.e. .� �Q/.dx; dy/ D �.dx/ �Q.x; dy/, and
�Q is the marginal of � �Q on F , i.e. .�Q/.dy/ D

R
E
�.dx/Q.x; dy/.

Proof. Let M be the random measure formed by .X; Y / on E � F . The random measure formed by Y on F is the
image of M under h.x; y/ D y, so we shall only prove 2. We prove by showing that the Laplace functional of M has
the form of Eq. (21). For positive f in E ˝ F , Mf D

P
i2I f .Xi ; Yi / so

e�Mf D
Y
i2I

e�f .Xi ;Yi /:

Since Yi ’s are conditionally independent given X , the conditional expectation of e�Mf given X D fXig is

E
h
e�Mf jX

i
D

Y
i2I

Z
F

e�f .Xi ;y/Q.Xi ; dy/ D
Y
i2I

e�g.Xi / D e�Ng ;

where g.x/ is defined by

e�g.x/ D

Z
F

e�f .x;y/Q.x; dy/:

Now take the expectation to get
Ee�Mf D Ee�Ng D e��.1�e

�g/

where we used Theorem 4.7 for the Poisson random measure N on E. Now

�.1 � e�g/ D

Z
E

�.dx/

�
1 �

Z
F

Q.x; dy/e�f .x;y/
�

D

Z
E

�.dx/

�Z
F

Q.x; dy/ �

Z
F

Q.x; dy/e�f .x;y/
�

D

Z
E

�.dx/

Z
F

Q.x; dy/
�
1 � e�f .x;y/

�
D .� �Q/.1 � e�f /:

So we see that
Ee�Mf D e�.��Q/.1�e

�f /:

This completes the proof that M is a Poisson random measure on E � F with mean � �Q.

Corollary 4.11. If X forms a Poisson random measure on E with mean � and Y is independent of X and is an
independency of variables with distribution � on .F;F /, then .X; Y / forms a Poisson random measure on .E �
F;E ˝ F / with mean � � � .

Proof. Take Q.x; �/ to be �.�/ in Theorem 4.10.

Example 4.12 (Compound Poisson Process). Let’s do some computation of a model of customer arrival. Suppose
the arrival time fTig1iD1 of customers at a store form a Poisson random measure N on RC with intencity c, i.e. the
mean measure is � D c � �L. Each customer spends, independently of each other, a random amount of money Yi at
the store which is distributed as � , with mean m and variance �2. In other words, fYig and fTig are independent and
furthermore fYig is an independency. We are interested in knowing the distribution of

Zt D

1X
iD1

Yi1.0;t� .Ti / ;
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the total amount of purchase before time t . From the preceding corollary, f.Ti ; Yi /g1iD1 forms a Poisson random
measure M on RC � RC with mean � � � . The random measure puts weight 1 on each of the point .Ti ; Yi / in the
space R2C. This means, for A � R2C measurable, one has

M.A/ D

1X
iD1

1A.Ti ; Yi /;

the count of those .Ti ; Yi / falling into A, and M.A/ has Poisson distribution with mean .� � �/.A/. In particular, if
A D Œ0; t ��B , thenM.A/ is the count of those in f.Ti ; Yi /g1iD1 who fall before time t and at the same time have sizes
in B . It is Poisson distributed and its mean is ct � �.B/. For f W RC � RC ! RC measurable,

Mf D

1X
iD1

f .Ti ; Yi /:

For f .x; y/ D 1Œ0;t� � y, we have f .Ti ; Yi / D 1Œ0;t�.Ti / � Yi , so that

Mf DM
�
1Œ0;t� � y

�
D

1X
iD1

Yi1.0;t� .Ti / ;

which is exactly Zt . Thus, we can represent Zt as

Zt D

Z
RC�RC

1Œ0;t� � yM.dt; dy/ DMf

with f D 1Œ0;t� � y. Some information on distribution of Zt :

EZt D .� � �/.f / D �
�
1Œ0;t�

�
� �.y/ D ct �m;

VarZt D .� � �/.f 2/ D �
�
1Œ0;t�

�
� �.y2/ D ct � .m2 C �2/;

Ee�rZt D Ee�M.rf / D exp

(
�ct

Z
RC

.1 � e�ry/�.dy/

)
:

The process Z D .Zt /t2RC is an example of a compound Poisson Process.

4.4 Additive Random Measures and Lévy Processes

Definition 4.13. Let M be a random measure on E. It is said to be additive if M.A1/; : : : ;M.An/ are independent
for all choices of finitely many disjoint sets A1; : : : ; An in E .

Deterministic measures and Poisson random measures are of course additive. Below are two more.

1. (Fixed atoms, random weights) IfD � E is countable and fWx W x 2 Dg is an independency of positive random
variables, then the random measure defined by

K.A/ D
X
x2D

Wx1A.x/

is an additive random measure.

2. (Random atoms, fixed weights) Let N be a Poisson random measure on E � RC with mean �. Define

L.A/ D

Z
A�RC

yN.dx; dy/ D N.1A � y/:
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Then L is an additive random measure on E. The Laplace transform for L.A/ is

Ee�rL.A/ D exp

(
�

Z
A�RC

.1 � e�ry/�.dx; dy/

)
by using Theorem 4.7.

Let ˛ be a deterministic measure and supposeK andL are independent. ThenM D ˛CKCL is an additive measure.
Conversely, it can be shown that the preceding is, basically, the general form of an additive random measure.

Definition 4.14. Let S D .St /t2RC be an increasing and right-continuous stochastic process with state space RC and
S0 D 0. It is said to be an increasing Lévy process (or subordinator) if it has stationary and independent increments.

Given an additive random measure M on RC , putting St D M.Œ0; t �/ yields an increasing right-continuous
process. Once we assure that St <1 almost surely for all t , independence of increments follows from the additivity
of M . Stationarity of increments is achieved by making sure that the mean measure is chosen appropriately and there
be no fixed atoms and the deterministic measure ˛ be a constant multiple of the Lebesgue measure. In other words, the
following proposition is in fact a complete characterization of increasing Lévy processes, Here we state the sufficiency
part.

Proposition 4.15. Let b 2 RC be a constant and let N be a Poisson random measure on RC �RC with mean measure
� D �L � �, where � satisfies Z

RC

.y ^ 1/�.dy/ <1: (22)

Define
St D bt C

Z
Œ0;t��RC

yN.dt; dy/ D bt CN
�
1Œ0;t� � y

�
:

Then S D .St /t2RC is an increasing Lévy process on RC, and

Ee�rSt D exp

(
�t

"
br C

Z
RC

.1 � e�ry/�.dy/

#)
:

Note St DM.Œ0; t �/ where M D ˛ C L.

Example 4.16 (Gamma process). Let S be as in Proposition 4.15 with b D 0 and

�.dy/ D a
e�cy

y
dy; y > 0

for some constant a; c 2 .0;C1/. Then � satisfies Eq. (22) so S is an increasing Lévy process and

Ee�rSt D exp
�
�t

Z 1
0

.1 � e�ry/ � a
e�cy

y
dy

�
D exp

�
�at � log

c C r

c

�
D

�
c

c C r

�at
:
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The integral can be worked out as follows:Z 1
0

 
e�cy

y
�
e�.rCc/y

y

!
dy D �

Z 1
0

e�zy

y

ˇ̌̌̌cCr
r

dy

D

Z 1
0

�Z cCr

c

e�zydz

�
dy

D

Z cCr

c

�Z 1
0

e�zydy

�
dz

D

Z cCr

c

1

z
dz

D log
c C r

c
:

Thus, St has a gamma distribution with shape index a and scale parameter c. For this reason S is called a gamma
process.

Example 4.17 (Increasing stable process). Let S be as in Proposition 4.15 with b D 0 and

�.dy/ D
ac

�.1 � a/
z�1�a; z > 0;

where a 2 .0; 1/ and c 2 .0;C1/. Again � satisfies Eq. (22), so S is increasing Lévy. Even though St <1 almost
surely,

ESt D t

Z
RC

y�.dy/ D t � .C1/ D C1

for every t > 0. The process S is called a stable process with index a 2 .0; 1/, because .Sut / has the same distribution
as .u1=aSt / for every u > 0, as can be demonstrated from the Laplace transform

Ee�rSt D e�c�t �r
a

:

The distribution of St does not have an explicit form in general. However for a D 1=2 one has

PfSt 2 dyg D
ctp
4�y3

e�c
2t2=4ydy:

4.5 Poisson Processes

Let N D .Nt /t2RC be a counting process on RC. Then there is an increasing sequence of random variables .Tk/
taking values in RC such that

Nt D

1X
kD1

1Œ0;t� .Tk/ ; t 2 RC:

The sequence .Tk/ forms a random counting measure M on RC, and

Mf D

1X
kD1

f .Tk/

for positive Borel functions. Indeed Nt DM.Œ0; t �/. Finally, let F be the filtration generated by N .

Theorem 4.18. Let c 2 .0;C1/. The following are equivalent:

1. N is a Poisson process with rate c.
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2. M is a Poisson random measure with mean � D c � �L.

3. .Nt � ct/t2RC is an F -martingale.

4. .Tk/ is an increasing sequence of F -stopping times, and the differences T1; T2�T1; T3�T2; : : : are independent
and exponentially distributed with parameter c.

The next theorem’s characterization is often used as a definition: A Poisson process is a counting process with
stationary and independent increments.

Theorem 4.19. The counting process N is a Poisson process if and only if it is a Lévy process.
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5 Lévy Processes

5.1 Itô-Lévy Decomposition

Definition 5.1. X is a Lévy process in Rd with respect to F if it is adapted to F , X0 D 0, and

1. for almost every !, the path t 7! Xt .!/ is right-continuous and left-limited;

2. the increment XtCu �Xt is independent of Ft and has the same distribution as Xu for every t; u 2 RC.

Example 5.2. � The simplest and trivial Lévy process is the drift Xt D bt for some b 2 Rd .

� A Wiener process W is a Lévy process in R that has continuous paths and has Gaussian distribution with mean
0 and variance u for the increment WtCu �Wt . The most general continuous Lévy process in R has the form

Xt D bt C cWt ; t 2 RC:

A similar result holds for processes in Rd .

� A Poisson process N with rate c is a Lévy process that is a counting process having the Poisson distribution
with mean cu for the increments NtCu �Nt .

� A compound Poisson process is a Lévy process. Let N be a Poisson process and .Yn/ an independency of
identically distributed random variables. Then the process defined by

Xt D

1X
nD1

Yn1fn�Nt g

is a compound Poisson process, in agreement with Example 4.12. Its every path is a step function; its jumps
occur at jump times of N and the size of successive jumps are Y1; Y2; : : :. It can be shown that, conversely,
every Lévy process whose paths are step functions is a compound Poisson process.

� Increasing Lévy processes are Lévy processes with state space RC, because the positivity of Su and stationarity
of XtCu � Xt implies that every increment is positive. Increasing Lévy processes include Poisson process,
compound Poisson process with positive jumps, gamma process and stable process with indices in .0; 1/.

Recall that a random variable is said to be infinitely divisible if, for every integer n, it can be written as the sum of
n independent and identically distributed random variables. If X is a Lévy process, then for fixed t > 0 and n � 1, we
can write Xt as the sum of the increments over .0; ı�; .ı; 2ı�; : : : ; ..n� 1/ı; nı� where ı D t=n, and those increments
are independent and identically distributed. Thus Xt is infinitely divisible for every t , and so is every increment
XtCu �Xt . It follows that the characteristic function of a Lévy process X has the form

'.r/ D EeirXt D et�.r/;

so that for t D t1 C � � � C tn and Xt D Xt1 C � � � CXtn , we have

'.r/ D Eeir.Xt1C���CXtn / D EeirXt1 � � � eirXtn

D
�
EeirXt1

�
� � �
�
EeirXtn

�
D 'Xt1 .r/ � � �'Xtn .r/

D et1�.r/ � � � etn�.r/

D e.t1C���Ctn/�.r/

D et�.r/:
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�.r/ is called the characteristic component of X .
IfX is a Lévy process, then it is possible that EXt does not exist. This is the case, for instance, ifX is a compound

Poisson process and the Yn do not have expected values. Or it is possible that EXt is well defined but is equal to
infinity. However, it means and variances of X are well-defined, then they must be linear in t , i.e.

EXt D at; VarXt D vt; t 2 RC;

which is a consequence of the stationarity and independence of the increments. For example, let f .t/ D EXt and
since Xt C Xt D X2t we have E.Xt C Xt / D 2EXt D EX2t ) 2f .t/ D f .2t/. Here a is a vector and v is a
symmetric and positive definite d � d matrix.

Example 5.3 (Pure jump processes). Let �Xt .!/ D Xt .!/ �Xt�.!/ be the size of a jump at time t . Let D! be the
discontinuity set for the path X.!/, that is,

D! D ft > 0 W �Xt .!/ ¤ 0g:

If X is continuous then D! is empty for almost every !. If X is Poisson or compound Poisson, then D! is an infinite
countable set, but D! \ .s; u/ is finite for all 0 � s < u < 1. For all other processes, the set D! is still infinite but
D! \ .s; u/ is infinite for all 0 � s < u <1.

A pure-jump process is a process X such that Xt is equal to the size of its jumps over Œ0; t �, i.e. for almost every
!,

Xt .!/ D
X

s2D!\Œ0;t�

�Xs.!/; t 2 RC;

where Vt .!/ D
P
s2D!\Œ0;t�

j�Xs.!/j <1. Vt .!/ is called the total variation of the path X.!/ over Œ0; t �.

Every increasing Lévy process without drift is a pure-jump Lévy process, so is the difference of two such indepen-
dent processes. The following constructs such processes in general. Conversely, every pure-jump Lévy process in Rd

has the form given in this theorem.

Theorem 5.4 (Pure Jump Processes). Let M be a Poisson random measure on RC � Rd with mean measure �L � �,
where the measure � on Rd satisfies �f0g D 0 andZ

Rd
.jyj ^ 1/�.dy/ < C1: (23)

Then almost surely,

Xt D

Z
Œ0;t��Rd

yM.dt; dy/ DM
�
1Œ0;t� � y

�
convergences absolutely for every t , and the path X has bounded variation over Œ0; t � for every t 2 RC. The process
X is a pure-jump process Lévy process in Rd , and its characteristic exponent is

�.r/ D

Z
Rd
.eir �y � 1/�.dy/; r 2 Rd :

Several remarks:

� The condition that �f0g D 0 is for reasons of convenience: to prevent linguistic faults like “jumps of size 0”,
and also to ensure that X and M uniquely determine each other.

� The measure � determines the probability laws of M and X . It is called the Lévy measure of X . It regulates the
jumps: for every Borel subsetA of Rd with �.A/ <1, the jump times ofX with corresponding sizes belonging
to A form the counting process t 7!M.Œ0; t ��A/ DM.1Œ0;t� � 1A/, and the latter is a Poisson process with rate
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�.A/ (because the mean is EM.1Œ0;t� � 1A/ D �L.Œ0; t �/ ��.A/ D t ��.A/). If we imagine some f.Ti ; Yi /g forms
M , then

M
�
1Œ0;t� � 1A

�
D

1X
iD1

1Œ0;t�.Ti / � 1A.Yi / D # f.Ti ; Yi / W 0 � Ti � t and Yi 2 Ag :

If �.Rd / D C1, then this implies that Xt has infinitely many jumps all the time, as the following remark says.

� The condition Eq. (23) is essential. It is satisfied by every finite measure. More interesting are infinite measures
that satisfy it; to such measures there correspond pure-jump processes that have infinitely many jumps during
every interval .s; t/ with s < t ; but, of those jumps, only finitely many may exceed " in magnitude no matter
how small " > 0 is. An example is the gamma process: for �.dy/ D y�1e�ydy; y 2 .0;C1/ we haveZ 1

0

.y ^ 1/
e�y

y
dy D

Z 1

0

e�ydy C

Z 1
1

e�y

y
dy < C1;

but

�.RC/ D

Z 1
0

e�y

y
dy �

Z 1

0

e�y

y
dy � e�1

Z 1

0

1

y
dy D C1:

Example 5.5 (Gamma processes). Recall that a gamma process is a stochastic process with independent gamma-
distributed increments. It is a pure-jump increasing Lévy process with intensity measure �.dx/ D ax�1 exp.�cx/dx
for x 2 .0;C1/. Those jumps whose size lies in the interval Œx; x C dx/ occur as a Poisson process with intensity
�.dx/.

Let XC and X� be independent gamma processes. Then

X D XC �X�

is a pure-jump Lévy process in R. It is called a two-sided gamma process. If they have the same shape rate a and scale
parameter c, then the Lévy measure of X is given by

�.dx/ D a
e�cjxj

jxj
dx; x 2 R n f0g;

with �f0g D 0. In this case it is called a symmetric gamma process. The distribution of Xt is not gamma and cannot
be expressed explicitely. However, its characteristic function is

EeirXt D
� c

c � ir

�at � c

c C ir

�at
D

�
c2

c2 C r2

�at
; r 2 R:

The total variation process V D XC CX� is a gamma process with shape rate 2a and scale parameter c.

Theorem 5.6 (Compensated Sum of Jumps). Let B denote the closed unit ball in Rd . Let M be a Poisson random
measure on RC � B with mean �L � �, where the measure � on B satisfies �f0g D 0 andZ

B

jyj2�.dy/ <1: (24)

For " 2 .0; 1/, define

X"t D

Z
Œ0;t��.BnB"/

yM.dt; dy/ � t

Z
BnB"

y�.dy/; t 2 RC:

Then there exists a Lévy process X , such that
Xt D lim

"#0
X"t

almost surely, the convergence being uniform in t over bounded intervals. The characteristic exponent of X is

�.r/ D

Z
B

.eir �y � 1 � ir � y/�.dy/; r 2 Rd :

46



We denote the limiting process X by

Xt D

Z
Œ0;t��B

yM.dt; dy/ � t

Z
B

y�.dy/:

We see X"t D Y
"
t � a"t . The theorem says, if � fails to satisfy Eq. (23), but satisfies Eq. (24), then as "! 0, Y "t fails

to converge and a" fails to converge, but their difference X"t D Y
"
t � a"t converges to Xt D Yt � at . The process X

is called a compensated sum of jumps. In the simplest setting, where y > 0 is one-dimensional, failure of Eq. (23)
amounts to Z 1

0

y�.dy/ D C1;

which is the case if for example �.dy/ D 1=y2dy, butZ 1

0

y2�.dy/ D

Z 1

0

y2 �
1

y2
dy D

Z 1

0

1dy < C1:

So for this kind of Lévy process X , it has infinite variation (i.e.
R
B
y�.dy/ D C1) over every time interval .s; t/.

The following theorem shows the construction of the most general Lévy process. It is the Itô-Lévy decomposition.

Theorem 5.7 (Itô-Lévy decomposition). Let b 2 Rd , let c be a .d � d 0/ matrix, and let � be a measure on Rd with
�f0g D 0 and Z

Rd
.jyj2 ^ 1/�.dy/ <1:

Let W be a d 0-dimensional Wiener process, and independent of it, let M be a Poisson random measure on RC � Rd

with mean �L � �. Then

Xt D bt C cWt C

�Z
Œ0;t��B

yM.dt; dy/ � t

Z
B

y�.dy/

�
C

Z
Œ0;t��Rd nB

yM.dt; dy/

defines a Lévy process in Rd , and the characteristic exponent of X is, with v D ccT ,

�.r/ D ib � r �
1

2
r � vr C

Z
B

.eir �y � 1 � ir � y/�.dy/C

Z
Rd nB

.eir �y � 1/�.dy/; r 2 Rd : (25)

Eq. (25) is called the Lévy–Khinchine formula. Note that if � satisfies Eq. (23), then the integral

a D

Z
B

y�.dy/

converges absolutely and the process X becomes

Xt D .b � a/t C cWt C

Z
Œ0;t��Rd

yM.dt; dy/; t 2 RC;

a drift plus a (continuous) Wiener process plus a pure-jump process. Accordingly, the characteristic exponent becomes

�.r/ D ir � .b � a/ �
1

2
r � vr C

Z
Rd
.eir �y � 1/�.dy/; r 2 Rd :

5.2 Stable Processes

Let a 2 RC and let X D .Xt /t2RC be a Lévy process in Rd . Then X is said to be a-stable, or stable with index a, or
self-similar with index a, if the process OX D .s�1=aXst /t2RC has the same probability law as X for every s 2 .0;1/.
The condition is also equivalent to that s�1=aXs having the same distribution as X1, or that Xt and t1=aX1 having the
same distribution.
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It can be shown that the index a cannot exceed 2. If X D W or X D cW then X is stable with index 2, namely
Xt has the same distribution as

p
tX1 for every t . If a 2 .0; 1/, then the process is necessarily a pure-jump Lévy

process whose Lévy measure is infinite and has a specific form. If a 2 .1; 2/, then the Lévy measure is again infinite
and has a specific form, and the paths have infinite variation over every time interval and cannot be pure-jump type. If
a D 1, there are three possibilities: the process can be pure drift and thus deterministic; or it can be a Cauchy process,
the paths having the same qualitative features as in the case of indices in .1; 2/, but each increment having a Cauchy
distribution; or it can be a Cauchy process plus some drift.

Example 5.8 (Standard Cauchy process on R). A Cauchy process X D .Xt / taking values in R is a Lévy, symmetric
and stable process with index 1. The distribution is

PfXt 2 dxg D
t

�.t2 C y2/
dy; y 2 R:

The Lévy measure is

�.dy/ D
1

�y2
dy; y 2 R:

We have Z
BnB"

y�.dy/ D

Z
BnB"

1

�y
dy D

Z �"
�1

1

�y
dy C

Z 1

"

1

�y
dy D 0;

so according to Theorem 5.6, almost surely

Xt D lim
"#0

Z
Œ0;t��Rn.�";"/

yM.dt; dy/ WD

Z
Œ0;t��R

yM.dt; dy/:

It follows that

EeirXt D exp
�
t lim
"#0

Z
Rn.�";"/

.eiry � 1/�.dy/

�
D exp

(
2t

Z
RC

.1 � cos ry/
�y2

dy

)
D e�t jrj:

The Cauchy process is not a pure-jump process, becauseZ
.0;1/

y�.dy/ D

Z
.�1;0/

.�y/�.dy/ D C1

and it follows that Z
.s;t/�.0;1/

yM.dt; dy/ D

Z
.s;t/�.�1;0/

.�y/M.dt; dy/ D C1

for every s < t . In other words, over every time interval .s; t/, the path X has infinitely many upword jumps whose
sizes sum up tpC1, and infinitely many downward jumps whose sizes sum up tp�1. In particular, the total variation
over .s; t/ is equal toC1 always.

The process X is not a martingale for the simple reason that EXt does not exist.

5.3 Lévy Processes on Standard Settings

Recall the following technical definitions:

� A probability space .�;H ;P/ is complete if for all A 2 H with P.A/ D 0, one has A0 2 H for all A0 � A.
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� An extended filtration F over RC is one that includes F1 D lim Ft D _tFt , the � -algebra generated by unions
of all Ft . We say F is right-continuous if

Ft D
\
">0

FtC"; t 2 RC:

Heuristically, this means that Ft includes all events that can be told by an “infinitesimal peek” into the future. F

is augmented if .�;H ;P/ is complete and that F0 (and therefore all Ft ) contains the collection of all negligible
events in H .

Definition 5.9. A stochastic base is a collection

B D .�;H ;F ; �;P/

where .�;H ;P/ is a complete probability space, F D .Ft /t2RC is an augmented right-continuous filtration on it,
and 0 D f�tgt2RC is a semigroup of operators on � such that

�0! D !; �u ı �t! D �uCt!; t; u 2 RC:

f�tgt2RC are called time-shifts.

Definition 5.10. Let X D .Xt /t2RC be a stochastic process with state space Rd . It is called a Lévy process over B if
it is adapted to F and the following hold:

1. Regularity. X is right-continuous and left-limited, and X0 D 0.

2. Additivity. XtCu D Xt CXu ı �t for every t; u 2 RC.

3. Lévy property. For every t; u 2 RC, the increment Xu ı �t is independent of Ft and has the same distribution
as Xu.

Note that if a process X is additive, and Zt D Z0 C Xt , then ZtCu D Zu ı �t . This is because ZtCu D
Z0CXtCu D Z0CXtCXuı�t D ZtCXuı�t , whileZuı�t D .Z0CXu/ı�t D Z0ı�tCXuı�t D ZtCXuı�t .

Theorem 5.11 (Markov property). Suppose X is a Lévy process over B, and let G denote the filtration generated by
X . Then for every time t , the process X ı �t is independent of Ft and has the same law as X . Equivalently, for every
bounded random variable V 2 G1,

EtV ı �t D EV; t 2 RC:

Theorem 5.12 (Strong Markov property). Let NG1 D G1 _N where N is the � -algebra generated by the collection
of negligible events in H . If X is a Lévy process over B, T is a stopping time of F , then for every bounded random
variable V 2 NG1,

ET V ı �T 1fT<1g D .EV /1fT<1g:
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6 Brownian Motion

6.1 Introduction

Definition 6.1. A stochastic process X D .Xt /t2RC with state space .R;B.R// is calleed a Brownian motion if it is
continuous and has stationary and independent increments. A process W D .Wt /t2RC is called a Wiener process if it
is a Brownian motion with

W0 D 0; EWt D 0; VarWt D t; t 2 RC:

If X is a Brownian motion, then it follows from the remarks in Example 5.2 that X has the form

Xt D X0 C at C bWt ; t 2 RC:

Theorem 6.2. W D .Wt /t2RC is a Wiener process if and only if it is continuous and is a Gaussian process with mean
0 and

Cov.Ws; Wt / D s ^ t; s; t 2 RC:

Theorem 6.3. Let W be a Wiener process. Then the following hold:

1. Symmetry. The process .�Wt /t2RC is again a Wiener process.

2. Scaling. OW D .c�1=2Wct /t2RC is a Wiener process for each c 2 .0;C1/, i.e. W is stable with index 2.

3. Time inversion. Putting QW0 D 0 and QWt D tW1=t for t > 0 yields a Wiener process . QWt /t2RC .

Proof. Symmetry and scaling properties are immediate from the definition for Wiener processes. To show 3, we start
by noting that f QWt W t > 0g is a continuous Gaussian process with mean 0 and Cov. QWs; QWt / D s ^ t for s; t > 0. For
example, for s < t , we have 1=s > 1=t , so

Cov. QWs; QWt / D .st/ � Cov.W1=s; W1=t / D st � .1=t/ D s D s ^ t:

For s > t ,
Cov. QWs; QWt / D .st/ � Cov.W1=s; W1=t / D st � .1=s/ D t D s ^ t:

Thus, 3 will follow from Theorem 6.2 once we show that QW is continuous at time 0, that is, almost surely,

lim
t#0
tW1=t D 0:

We show the equivalent condition that Wt=t ! 0 almost surely as t ! 1. To this end, we start by noting that if
n � 0 is an integer and t 2 .n; nC 1�, thenˇ̌̌̌

1

t
Wt

ˇ̌̌̌
�
1

n
jWn C .Wt �Wn/j �

ˇ̌̌̌
1

n
Wn

ˇ̌̌̌
C
1

n
sup
0�s�1

jWnCs �Wnj: (26)

By strong law of large numbers,Wn=n! 0 almost surely, sinceWn D W1C � � �CW1 and each of the n copies ofW1
has mean EW1 D 0. Next, by Kolmogorov’s inequality (continuous time version),

P

(
1

n
sup
0�s�1

jWnCs �Wnj > "

)
�

1

n2"2
EjWnC1 �Wnj

2
D

1

n2"2
:

Since
P
1=n2 is finite, the Borel-Cantelli lemma shows that the last term in Eq. (26) goes to 0 almost surely as

n!1. Hence Wt=t ! 0 almost surely as t !1 and the proof is complete.

50



Theorem 6.4 (Strong Markov property). Let W be a Wiener process and let G be the filtration generated by W . Let
T be a stopping time of F . Then for every bounded random variable V 2 G1,

ET V ı �T 1fT<1g D .EV /1fT<1g:

In particular, if T <1, then the process W ı �T D .WTCu �WT /u2RC is independent of FT and is again a Wiener
process.

Theorem 6.5. Let T be an F -stopping time, and let U 2 FT be a positive real-valued random variable. Then

ET f .WTCU �WT /1fT<1g D ŒEf .WU /� 1fT<1g; 8f 2 B.R/ bounded:

6.2 Hitting Times and Recurrence Times

Let W be a Wiener process over a stochastic base B. We are interested in hitting times

Ta D infft > 0 W Wt > ag; a 2 RC; (27)

the first time that Wt 2 .a;C1/. Let G be the (augmented) filtration generated by W .

Proposition 6.6. Almost surely, T0 D 0.

Proof. According to Blumenthal’s zero–one law, each event in G0 has probability zero or one. We have fT0 D 0g 2 G0.
Note that fWt > 0g has probability 1=2, and ! 2 fWt > 0g ) ! 2 fT0 < tg for every t > 0 implies that
fWt > 0g � fT0 < tg, so PfT0 < tg � 1=2 for every t > 0. Letting t ! 0 concludes the proof.

According to the above proposition, for almost every !, and for every " > 0, there is u < " such thatWu > 0; there
is also 0 < s < " such that Ws.!/ < 0, this being by symmetry. Taking " of the second phrase to be the time u of the
preceding one, and recalling the continuity of the paths, we conclude that for every " > 0 there are 0 < s < t < u < "
such that

Ws.!/ < 0; Wt .!/ D 0; Wu.!/ > 0:

Interating the argument with s replacing " yields

Corollary 6.7. For almost every !, there are times u1 > t1 > s1 > u2 > t2 > s2 > � � � with limit 0 such that, for
each n,

Wsn.!/ < 0; Wtn.!/ D 0; Wun.!/ > 0:

Thus, the Wiener pathW.!/ is highly oscillatory. Starting withW0.!/ D 0, the path spends no time at 0; it crosses
under and over 0 infinitely many times during .0; "/, no matter how small " > 0 may be. By applying the corollary to
the time inversion process in 3, we get

Corollary 6.8. For almost every ! there exist times u1 < t1 < s1 < u2 < t2 < s2 < � � � with limitC1 such that

lim
n!1

Wsn.!/ D �1; Wtn D 0 8n; lim
n!1

Wun.!/ D C1:

In particular, the set ft 2 RC W Wt .!/ D 0g is unbounded.

We next explore the distribution of hitting times Ta.

Lemma 6.9. For a > 0, we have

PfTa � t;Wt > ag D PfTa � tgP
˚
Wt�Ta > 0

	
D
1

2
PfTa � tg:
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Proof. Take T D Ta and U D .t � Ta/1fTa�tg 2 FTa , and f D 1.0;C1/ in Theorem 6.5, we get

ETa
�
1.0;C1/ .WTaCU �WTa/ 1fTa�tg

�
D ETa

�
1.0;C1/ .Wt � a/ 1fTa�tg

�
D ETa

�
1.a;C1/ .Wt / 1fTa�tg

�
D ETa

�
1fTa�tg1fWt>ag

�
D E Œf .WU /� 1fTa�tg

D P
˚
Wt�Ta > 0

	
1fTa�tg:

Take expectations on both side of

ETa
�
1.a;C1/ .Wt / 1fTa�tg

�
D P

˚
Wt�Ta > 0

	
1fTa�tg

we get

E1.a;C1/ .Wt / 1fTa�tg D PfTa � t;Wt > ag D P
˚
Wt�Ta > 0

	
PfTa � tg D

1

2
PfTa � tg:

In particular, since fWt > ag � fTa � tg, the intersection of the two events is fWt > ag \ fTa � tg D fWt > ag,
so PfTa � tg D 2PfTa � t;Wt > ag D 2PfWt > ag D PfjWt j > ag. Thus

PfTa � tg D PfjWt j
2 > a2g D P

��p
tW1

�2
> a2

�
D P

˚
tZ2 > a2

	
with Z � N.0; 1/

D P

�
a2

Z2
< t

�
:

Thus Ta has the same distribution as a2=Z2. Since Z 2 R n f0g almost surely, Ta 2 .0;C1/ almost surely. The
density can be calculated as

PfTa 2 dtg D
ae�a

2=2t

p
2�t3

dt: t > 0: (28)

From the formula we can see that ETa D C1.

Proposition 6.10. Fix a 2 .0;C1/ and define

Ta� D infft > 0 W Wt � ag D infft > 0 W Wt D ag:

Then Ta� is a stopping time of G and Ta� D Ta almost surely.

Proof. The statement that Ta� is a stopping time of G is obvious. Clearly Ta� � Ta so Ta� < C1 almost surely,
and W ı �Ta� is again Wiener by the strong Markov property at Ta�. Thus by Proposition 6.6 we have T0 ı �T�a D 0
almost surely, and so

Ta D Ta� C T0 ı �T�a D Ta�

almost surely.

We recall some facts from probability theory. Let X and Y be independent standard Gaussian. Then X2 and Y 2

both have gamma distribution with shape index 1=2 and scale index 1=2. The random variable A D X2=.X2 C Y 2/

has beta distribution with index pair .1=2; 1=2/. This beta distribution is also called arcsine distribution, because

PfA 2 dug D
�.1=2C 1=2/

�.1=2/�.1=2/
u
1
2�1.1 � u/

1
2�1du D

1

�
p
u.1 � u/

du

52

https://en.wikipedia.org/wiki/Arcsine_distribution


because �.1=2/ D
p
� , and

PfA � ug D

Z u

0

1

�
p
x.1 � x/

dx D
2

�
arcsin

p
u; 0 � u � 1:

Note that A D X2=.X2 C Y 2/ 2 Œ0; 1�, so tA 2 Œ0; t � and t=A 2 Œt;C1�.
Let

1. Gt D supfs � t W Ws D 0g, the last time before t such that W D 0;

2. Dt D inffs > t W Ws D 0g, the first time after t such that W D 0.

Note Gt � t and Dt > t for each t 2 RC. Also note that, if Gt < s < t , then Ds cannot fall into the interval .s; t/,
otherwise the definition of Gt would be violated; thus Ds > t . Conversely, if Ds > t , then Wt 0 ¤ 0 for all t 0 2 .s; t/,
so in particular Gt < s at least. Thus fGt < sg D fDs > tg.

Proposition 6.11. For each t 2 RC, Gt � tA and Dt � t=A.

Proof. Let X and Y be independent standard Gaussian variables. Recall Ta � a2=Y 2. Consider Rt D Dt � t . If
Wt D x, then Rt is the hitting time of the point �x D �Wt by the path W ı �t . Since W ı �t is independent of Ft ,
so is .�W / ı �t , so we conclude from here that Rt � .�Wt /2=Y 2 D W 2

t =Y
2. We may replace Wt by

p
tX to obtain

Rt � tX
2=Y 2. Thus,

Dt D t CRt � t .X
2
C Y 2/=Y 2 � t=A:

Finally,
PfGt < sg D PfDs > tg D P

n s
A
> t

o
D PftA < sg

so that Gt � tA.

For example, the probability of the event that Wt 0 ¤ 0 during an interval Œs; t � can be calculated as

P
˚
Wt 0 ¤ 0 8t 0 2 Œs; t �

	
D PfGt < sg D P

n
A <

s

t

o
D
2

�
arcsin

r
s

t
:

The variable Rt D Dt � t is called forward recurrence time. It is the time needed for the process W to return

to value 0 given that it is in Wt . Qt D t �Gt is called backward rcurrence time; it is the time needed to reach the
point 0 if we go backward in time. It is shown in the proof that

Rt � tX
2=Y 2 D tC 2;

where C is standard Cauchy. Because A and 1 � A have the same distribution, we have

PfQt � sg D Pft � tA � sg D P
n
1 � A �

s

t

o
D P

n
A �

s

t

o
D
2

�
arcsin

r
s

t
; 0 � s � t:

Theorem 6.12. Let
At D

Z
Œ0;t�

1RC ıWsds:

Then At has the same distribution as that of tA, where A has the arcsine distribution.
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Figure 1: Relationship between Ta and Mt from the textbook (Çınlar 2011).

6.3 Hitting Times and Running Maximum

We are interested in the process T D .Ta/a2RC of hitting times and its relationship with the process M D .Mt /t2RC

of running maximum, defined as
Mt D max

0�s�t
Ws; t 2 RC:

Note that the definition of hitting times Eq. (27) remains true when we replaceWt byMt . Indeed, the paths a 7! Ta.!/

and t 7!Mt .!/ are functional inverses of each other:

Ta.!/ D infft > 0 WMt .!/ > ag; Mt D inffa > 0 W Ta.!/ > tg:

See Fig. 1 for an illustration from the textbook.

Proposition 6.13. For almost every !, the path a 7! Ta.!/ is right-continuous, strictly increasing, real-valued, and
with T0.!/ D 0 and lima!1 Ta.!/ D C1. For almost every !, the path t 7! Mt .!/ is increasing, continuous,
real-valued, and with M0.!/ D 0 and limt!1Mt .!/ D C1.

Proposition 6.14. For every a and t in RC,

PfTa < tg D PfMt > ag D PfjWt j > ag: (29)

The above proposition implies that Mt has the same distribution as jWt j for each t . Thus, in particular, EMt Dp
2t=� and EM 2

t D t . However, this does not imply that the probability law of the whole M is the same with jW j.
We mention that Eq. (29) is also called the reflection principle. It says if you reflect the path around Wt0 at any t0,

then the reflected path (namely .2Wt0 �Wt /t2Œt0;1/) has the same distribution as .Wt /t2Œ0;1/.

Theorem 6.15. The process T D .Ta/a2RC is a strictly increasing pure-jump Lévy process. It is stable with index
1=2, and its Lévy measure is

�.dt/ D
1

p
2�t3

dt; t > 0: (30)

Proof. Fix a; b 2 .0;1/. In order forW to hit .aC b;1/, it must hit .a;1/ first, and thenW ı �Ta must hit .b;1/.
Thus,

TaCb D Ta C Tb ı �Ta :
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Figure 2: Visualization of the Poisson random measure N of hitting times T D .Ta/a2RC from the textbook (Çınlar
2011).

Since Ta < 1 almost surely, the process W ı �Ta is independent of FTa and is again a Wiener process, by strong
Markov property at Ta. Thus TaCb � Ta D Tb ı �Ta is independent of FTa and has the same distribution as Tb .
Together with Proposition 6.13, this shows that the process T is a strictly increasing Lévy process over the stochastic
base .�;H ; OF ; O�;P/, where OFa D FTa and O�a D �Ta .

The distribution of Ta is the same as that of a2T1, by Eq. (28). Thus, the Lévy process is stable with index 1=2.
Every such process is of the pure-jump type, and its Lévy measure has the form �.dt/ D c=t3=2dt . The constant
c D 1=

p
2� because the following equation holds:

Ee�rTa D exp

(
�a

Z
RC

.1 � e�rt /�.dt/

)
D e�a

p
2r :

Theorem 6.16. Let N be the random measure on RC � RC defined by

N.B/ D
X

aWTa>Ta�

1B.a; Ta � Ta�/; B 2 B.R2C/:

Then N is Poisson with mean �L � �, where � is given by Eq. (30). We have

Ta D

Z
.0;a��RC

uN.dx; du/; a 2 RC:

See Fig. 2 for a visualization of N from the textbook. Note that, for fixed a, almost surely there are no atoms on
the line fag � RC, so Ta D Ta� almost surely, in agree with Proposition 6.10. Since N has infintely many atoms in
any .a; b/ � .0;1/, the path M stays flat at infinitely many levels on its way from a to b, but only finitely many of
those exceed " in duration no matter how small " > 0 is.

6.4 Other Properties

We put the following definitions or notations for reference.

� A perfect set is a closed set with no isolated point. The simplest example is a union of finitely many disjoint
closed intervals. Another example is the Cantor set. Every perfect set C has the power of the continuum, that
is, there exists an injection of RC into C .
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Zeros

We are interested in the qualitative features of the set

C! D ft 2 RC W Wt .!/ D 0g; ! 2 �;

the set of zeros of W . For fixed !, it is the inverse image of the closed set f0g under the continuous mapping
t 7! Wt .!/, so it is closed, and its complement is the union of a countable collection of disjoint open intervals, called
contiguous intervals.

Theorem 6.17. For almost every !, the set C! is perfect and unbounded, its interior is empty, its Lebesgue measure
is zero, and it has the power of the continuum.

Proof. We already showed that C! is closed. It is unbounded for almost every ! from Corollary 6.8. Its Lebesgue
measure is zero for almost every ! since

E�L.C / D E

Z
RC

1f0g .Wt / dt D

Z
RC

PfWt D 0gdt D 0:

This implies that the interior of C! is empty for almost every !, because no set of Lebesgue measure zero can contain
an open interval. To complete the proof, there remains to show that, for almost every !, the set C! has no isolated
point. Let

RC n C! D
[
i2N

.Gi .!/;Di .!//: (31)

According to the analysis after Proposition 6.6, there is an almost sure set �00 such that, for every ! 2 �00,
there is a strictly decreasing sequence ftkg � C! with limit 0, i.e. 0 2 C! is a limit point of C! . Similarly, there
is an almost sure event �i such that Di .!/ is a limit point of C! for every ! 2 �i . Consider the intersection
�0 D �00 \�0 \�1 \ � � � . For ! 2 �0, neither 0 nor Di .!/ is isolated. In view of Eq. (31), C! is perfect for every
! 2 �0.

Total Variation and Quadratic Variation

The (probabilistic) quadratic variation of W is ŒW;W �t D t .
For almost every !, the path W.!/ has infinite total variation over every interval Œa; b� with a < b.

Hölder Continuity, Nowhere Differentiability

Let ˛ 2 RC; B � RC, and f W RC ! R. The function f is said to be Hölder continuous of order ˛ on B if there is a
constant k such that

jf .t/ � f .s/j � k � jt � sj˛; s; t 2 B:

It is said to be locally Hölder continuous of order ˛ if it is such on Œ0; b� for every b < 1. Note that if f is
differentiable at some point, then it is Hölder continuous of order 1 at some neighborhood of that point.

Proposition 6.18. For almost every !, the Wiener path W.!/ is not Hölder continuous of order ˛ on any interval for
˛ > 1=2. In particular, for almost every !, the path is nowhere differentiable.

Proposition 6.19. For almost every !, the path W.!/ is locally Hölder continuous of order ˛ for every ˛ < 1=2.
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