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1 Introduction

Definition 1.1 (Autocovariance Function). Let fXtg be a stochastic process. The autocovariance
function is

X.t; s/ D cov.Xt ; Xs/ D EXtXs � EXtEXs:

Definition 1.2 (Stationarity). A stochastic process fXtg is called stationary if for all integers r; s
and t

1. EXt D � is constant;

2. VXt <1;

3. X.t; s/ D X.t C r; s C r/.

The autocorrelation function (ACF) is defined as

�X.h/ D
�X.h/

�X.0/
D corr.XtCh; Xt/

for all h 2 Z.

1.1 Construction of Stochastic Processes

The simplest building block is a process with zero autocorrelation called a white noise process.

1.1.1 White Noise

A stationary process fZtg is called white noise if

� EZt D 0;

� Z.h/ D

8<:�2 h D 0I

0 h ¤ 0

We denote this by Zt � WN.0; �2/. The white noise process is therefore stationary and tempo-
rally uncorrelated, i.e. the ACF is always equal to zero, except for h ¤ 0 where it is equal to one.
As the ACF possesses no structure, it is impossible to draw inferences from past observations to its
future development, at least in a least square setting with linear forecasting functions. Therefore
one can say that a white noise process has no memory. If fZtg is not only temporally uncorrelated,
but also i.i.d. then we write Zt � IID.0; �2/. If in addition Zt is normally distributed, then we
write Zt � IIN.0; �2/.

3



1.1.2 Moving-Average of Order One

The moving-average process of order one, MA(1) process, is

Xt D Zt C �Zt�1 with Zt � WN.0; �2/:

We have EXt D 0 and

X.t C h; t/ D cov.XtCh; Xt/

D cov.ZtCh C �ZtCh�1; Zt C �Zt�1/

D EZtChZt C �EZtChZt�1 C �EZtCh�1Zt C �
2EZtCh�1Zt�1

D

8̂̂̂<̂
ˆ̂:
.1C �2/�2 h D 0I

��2 h D ˙1I

0 otherwise.

The autocorrelation function (ACF) is

�X.h/ D

8̂̂̂<̂
ˆ̂:
1 h D 0I

�
1C�2 h D ˙1I

0 otherwise.

Note that the correlation between Xt and Xt�1 is restricted within 1
2
.

1.1.3 Random Walk

Let fZtg be a white noise process. Then the process

Xt D Z1 CZ2 C � � � CZt D

tX
jD1

Zj ; t > 0

is called a random walk. In contrast to fZtg, fXtg is only defined for t > 0. The random walk can
alternatively be defined through the recursion

Xt D Xt�1 CZt ; t > 0 and X0 D 0:

If in each time period a constant ı is added such that Xt D ı C Xt�1 C Zt , then the process is
called a random walk with drift. The random walk process is not stationary, as V .Xt/ D t � �2

depends on t .
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2 ARMA Models

Definition 2.1. A stochastic process fXtg is called an autoregressive moving-average process
(ARMA process) of order .p; q/ if it is stationary and satisfies a linear stochastic difference equation
of the form

Xt � �1Xt�1 � � � � � �pXt�p D Zt C �1Zt�1 C � � � C �qZt�q

with Zt � WN.0; �2/ and �q�q ¤ 0. fXtg is called an ARMA(p; q) process with mean � of
fX � �g is an ARMA(p; q) process.

2.1 The Lag Operator

We use L to denote the Lag operator:
LXt D Xt�1:

We use the following to denote the autoregressive and moving-average polynomials:

ˆ.L/ D 1 � �1L � � � � � �pLp;
‚.L/ D 1C �1LC � � � C �pLp:

We write ARMA process as ˆ.L/Xt D ‚.L/Zt .

2.2 Some Special Cases

2.2.1 MA(q) Process

The MA(q) process is

Zt D ‚.L/Zt D �0Zt C �1Zt�1 C � � � C �qZt�q with �0 D 1 and �q ¤ 0:

First and second moments: EXt D 0 and

X.h/ D cov.XtCh; Xt/ D E.XtChXt/

D

8<:�2
Pq�jhj
iD0 �i�iCjhj; jhj � qI

0 jhj > q:

Note that every MA(q) process is stationary irrespective of the parameters �1; : : : ; �q. Because
the correlation between Xt and Xs is zero if t and s are more than q periods apart, we call such
processes have short memory or short range dependence.
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2.2.2 AR(1) Process

The AR(1) process is

Xt D �Xt�1 CZt Zt � WN.0; �
2/ and � ¤ 0:

If j�j < 1 then substitute the formula for Xt several times into the difference equation we get

Xt D �.�Xt�2 CZt�1/CZt D � � �

D Zt C �Zt�1 C �
2Zt�2 C � � � C �

kZt�k C �
kC1Xt�k�1:

If fXtg is stationary, then VXt�k�1 is constant and does not depend on k, so we have

V

0@Xt � kX
jD0

�jZt�j

1A D �2kC2VXt�k�1 ! 0 as k !1:

This shows that
Pk
jD0 �jZt�j converges in the mean square sense, and thus also in probability, to

Xt as k !1. Thus we can take

Xt D Zt C �Zt�1 C �
2Zt�2 C � � � D

1X
jD0

�jZt�j

as a solution to the stochastic difference equation. The mean and autocovariance function are
EXt D 0 and

X.h/ D cov.XtCh; Xt/ D E

0@ 1X
jD0

�jZtCh�j

1A0@ 1X
jD0

�jZt�j

1A : (1)

We match the terms in the first parenthesis and in the second parenthesis with equal subscripts. Let
t C h � j1 D t � j2, we get j1 D hC j2. Thus the coefficients �hCj2 from the left and �j2 from
the right will match. We have �jhj � �2j2 � �2 for every j2, so X.h/ is

X.h/ D �
2�jhj

1X
jD0

�2j D
�jhj

1 � �2
�2; h 2 Z:

The autocorrelation function is �X.h/ D X.h/=X.0/ D �jhj.

2.3 Causality and Invertibility

Definition 2.2. An ARMA(p; q) process fXtg with ˆ.L/Xt D ‚.L/Zt is called causal with
respect to fZtg if there exists a sequence f j g with

P1
jD0 j j j <1 such that

Xt D

1X
jD0

 jZt�j D ‰.L/Zt with  0 D 1

where ‰.L/ D
P1
jD0 jL

j .
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As we can observe, the coefficients f j g is exactly the impulse response function.

Theorem 2.3. Let fXtg be an ARMA(p; q) process with ˆ.L/Xt D ‚.L/Zt and assume that the
polynomialsˆ.z/ and‚.z/ have no common root. Then fXtg is causal with respect to fZtg if and
only if ˆ.z/ ¤ 0 for jzj � 1, i.e. all roots of the equation ˆ.z/ D 0 lie outside the unit circle.

How do we calculate f j g? We expand ‰.z/ˆ.z/ D ‚.z/, namely

. 0 C  1z C  2z
2
C � � � /.1 � �1z � �2z

2
� � � � � �pz

p/ D 1C �1z C �2z
2
C � � � C �qz

q

to get
 0 � 0�1z � 0�2z

2 � � � � �  0�pz
pC

 1z � 1�1z
2 � � � � �  1�pz

pC1C

�2z
2 � � � �

D  0C . 1� 0�1/zC . 2� 0�2� 1�1/z
2C� � � . We equate the coefficients from 1C �1zC

�2z
2 C � � � C �qz

q to get

 0 D 1;

 1 D �1 C �1 0 D �1 C �1;

 2 D �2 C �2 0 C �1 1 D �2 C �2 C �1�1 C �
2
1 :

:::

As an exercise, given the causal representation of an ARMA(2; 1) process, how do you recover the
coefficients f�1; �2; �1g? The equation is

. 0 C  1z C  2z
2
C � � � /.1 � �1z � �2z

2/ D 1C �1z:

We have three unknowns so we need three equations. Multiply out:8̂̂̂<̂
ˆ̂:
�1 C �1 D  1

 1�1 C  0�2 D  2

 2�1 C  1�2 D  3

And then we can solve for f�1; �2; �1g.
In time series analysis the realizations of fXtg are observed and fZtg are unobserved. It is

therefore of interest to know whether it is possible to recover the unobserved shocks from the
observations fXtg. This leads to the concept of invertibility.

Definition 2.4. An ARMA(p; q) process for fXtg with ˆ.L/Xt D ‚.L/Zt is called invertible
with respect to fZtg if there exists a sequence f�j g with

P1
jD0 j�j j <1 such that

Zt D

1X
jD0

�jXt�j :

Theorem 2.5. fXtg is invertible with respect to fZtg if and only if ‚.z/ ¤ 0 for jzj � 1.
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2.4 Computation of the Autocovariance Function of an ARMA process

How to compute the autocovariance function X.h/ of an ARMA process fXtg?

2.4.1 First Procedure

We can write fXtg in terms of its causal representation Xt D
P1
jD0 jZt�j , and then calculate

X.h/ as in Eq. (1):

X.h/ D �
2

1X
jD0

 j jCjhj:

2.4.2 Second Procedure

We can multiply the ARMA equation by Xt�h and apply the expectation operator:

EXtXt�h � �1EXt�1Xt�h � � � � � �pEXt�pXt�h

D EZtXt�h C �1EZt�1Xt�h C � � � C �qEZt�qXt�h:

This leads to an equation system

.h/ � �1.h � 1/ � � � � � �p.h � p/ D �
2
P
h�j�q �j j�h; h < maxfp; q C 1g

.h/ � �1.h � 1/ � � � � � �p.h � p/ D 0; h � maxfp; q C 1g:

The general solution of the difference equation is

.h/ D c1z
�h
1 C � � � C cpz

�h
p

where z1; : : : ; zp are the distinct roots of the polynomial ˆ.z/ D 1� �1z � � � � � �pzp D 0. Note
that the initial conditions  1; : : : ;  q have to be determined beforehand.
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3 Forecasting Stationary Process

The problem is: given the observations fXT ; : : : ; X1g, how do we forecast XTCh for h > 0?

3.1 The Theory of Linear Least-Squares Forecasts

We restrict ourselves to linear forecast functions, also called linear predictors, PTXTCh. It takes
the form

PTXTCh D a0 C a1XT C � � � C aTX1 D a0 C
TX
iD1

aiXTC1�i :

We determine the coefficients by minimizing the mean squared errors:

min
a0;:::;aT

S D S.a0; : : : ; aT / D E.XTCh � PXTCh/
2
D E.XTCh � a0 � a1XT � � � � � aTX1/

2:

The first order conditions are

@S

@a0
D E

 
XTCh � a0 �

TX
iD1

aiXTC1�i

!
D 0; (2)

@S

@aj
D E

" 
XTCh � a0 �

TX
iD1

aiXTC1�i

!
XTC1�j

#
D 0; j D 1; : : : ; T: (3)

The first equation says that the mean of the forecast error E.XTCh � PXTCh/ is zero. There is no
bias, neither upward nor downward, in the forecasts. The second equation says that EŒ.XTCh �

PTXTCh/XTC1�j � D 0 for j D 1; : : : ; T . The forecast error is orthogonal (uncorrelated) with the
available information represented by the past observations. Geometrically speaking, the best linear
forecast is obtained by finding the point in the linear subspace spanned by fXT ; : : : ; X1g which is
closest to XTCh. The normal equations can be rewritten in matrix notation as

a0 D �

 
1 �

TX
iD1

ai

!
where � D EXt ; (4)

0BBBB@
.0/ .1/ � � � .T � 1/

.1/ .0/ � � � .T � 2/
:::

:::
: : :

:::

.T � 1/ .T � 2/ � � � .0/

1CCCCA
0BBBB@
a1

a2
:::

aT

1CCCCA D
0BBBB@

.h/

.hC 1/
:::

.hC T � 1/

1CCCCA : (5)

Let � D .1; 1; : : : ; 1/0, ˛T D .a1; : : : ; aT /, T .h/ D ..h/; : : : ; .hC T � 1//, and �T D Œ.i �

j /�i;jD1;:::;T denote the symmetric T �T covariance matrix of .XT ; : : : ; X1/0, the normal equations
can be written as

a0 D �.1 � �
0˛T / (6)
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�T˛T D T .h/: (7)

Dividing the second equation by .0/, one obtain

RT˛T D �T .h/; (8)

where RT D �T =.0/ and �.h/ D .�.h/; : : : ; �.hC T � 1//0. The coefficients ˛T is obtained by
inverting �T or RT :

˛T D

0B@a1:::
aT

1CA D ��1T T .h/ D R
�1
T �T .h/:

A sufficient condition that ensures invertibility of �T and RT is .0/ > 0 and limh!1 .h/ D 0.
The mean squared error or variance of the forecast error is

vT .h/ D E.XTCh � PTXTCh//
2

D � � �

D .0/ � ˛0T T .h/:

3.1.1 Forecasting AR(p) Process

For AR(1) process, Eq. (5) yields (remember .h/ D �h)

˛T D .a1; a2; : : : ; aT /
0
D .�h; 0; : : : ; 0/0:

We therefore get the following predictor:

PTXTCh D �
hXT :

For example, for h D 1, the forecast is �XT , for h D 2, the forecast is �.�XT / D �2XT etc. The
variance of the forecast error is given by

vT .h/ D
1 � �2h

1 � �2
�2:

For h D 1 this is simply �2, and as h!1, vT .h/! 1
1��2�

2, the unconditional variance of Xt .
For AR(p) process,it can be shown that the one-step ahead forecast is

PTXTC1 D �1XT C �2XT�1 C � � � C �pXTC1�p; T > p:

The forecast for h > 1 can be obtained by recursively applying the forecast operator. For example,
the two-step ahead forecast is

PTXTC2 D PT .�1XTC1/C PT .�2XT /C � � � C PT .�pXTC2�p/C PT .ZTC2/

D �1.�1XT C �2XT�1 C � � � C �pXTC1�p/C �2XT C � � � C �pXTC2�p

D .�21 C �2/XT C .�1�2 C �3/XT�1 C � � � C .�1�p�1 C �p/XTC2�p C .�1�p/XTC1�p:
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3.1.2 Forecasting with MA(q) Process

Forecasting with MA(q) process is more complicated. For example, for an MA(1) process Xt D
ZtC�Zt�1 with j� j < 1 andZt � WN.0; �2/, the one-step ahead forecast PTXTC1 will depends
on all available information XT ; XT�1; : : : ; X1 (namely a1; : : : ; aT are generally non-zero). In
contrast, the forecast for AR(p) model only depends on the first p observations. The coefficients
of the forecast ˛T D .a1; : : : ; aT / are also constant, while for the MA(q) process the forecast
coefficients can change when new information arrives.

As more information becomes available, the variance of the forecast error declines monoton-
ically. In the h D 1 case it will converge to �2. To see this, note the forecast is PTXTC1 D

PTZTC1 C �PTZT D �PTZT . The forecast error is ZTC1. As more and more observation be-
comes available, it becomes more and more possible to recover the “true” value of the unobserved
ZT from the observationsXT ; XT�1; : : : ; X1. As the process is invertible, in the limit it is possible
to recover the value of ZT exactly. The only uncertainty remaining is with respect to ZTC1 which
has a mean of zero and a variance of �2.

3.2 Partial Autocorrelation Function

Recall that in our prediction problem we predictXTC1 as a linear combination of past dataXT ; : : : ; X1:

XTC1 D PTXTC1 CZTC1 D a1XT C : : :C aTX1 CZTC1

where ZTC1 denote the forecast error. We can view this as a regression equation: aT is how much
X1 contributes to the forecast of XTC1 after controlling for XT ; : : : ; X2. We refer to aT as the
partial autocorrelation. In AR(p) process the information useful for forecasting XTC1.T > p/

is incorporated in the last p observations so that aT D 0. In MA process, every new observation
contributes to the recovering of the Zt ’s. Thus the partial autocorrelation aT is not zero. Taking T
successively to 0; 1; 2; etc, we get the partial autocorrelation function (PACF).

Definition 3.1 (First Definition). The partial autocorrelation function (PACF) ˛.h/ of a stationary
process is defined as

˛.0/ D 1

˛.h/ D ah; h D 1; 2; : : :

where ah denotes the last elements of the vector ˛h D ��1h h.1/ D R
�1
h
�h.1/.

Definition 3.2 (Second Definition). The partial autocorrelation function (PACF) ˛.h/ of a station-
ary process is defined as

˛.0/ D 1

˛.1/ D corr.X2; X1/ D �.1/
˛.h/ D corrŒXhC1 � P.XhC1j1;X2; : : : ; Xh/; X1 � P.X1j1;X2; : : : ; Xh/�:
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3.2.1 Autoregressive Process

The idea of the PACF can be well illustrated in the case of an AR(1) processXt D �Xt�1CZt . Xt
and Xt�2 are correlated with each other despite the fact that there is no direct relationship between
the two. The correlation is obtained “indirectly” because Xt is correlated with Xt�1 which is itself
correlated with Xt�2. Because both correlation are equal to �, the correlation between Xt and
Xt�2 is equal to �.2/ D �2. The ACF therefore accounts for all correlation, including the indirect
ones. The partial autocorrelation on the other hand only accounts for the direct relationships. In
the case of the AR(1) process, there is only an indirect relation between Xt and Xt�hfor h � 2,
thus the PACF is zero.

Definition 3.1 implies that for an AR(1) process

˛1 D � ) ˛.1/ D �.1/ D �;

˛2 D .�; 0/
0 ) ˛.2/ D 0;

˛3 D .�; 0; 0/
0 ) ˛.3/ D 0:

The PACF for an AR(1) process is therefore equal to zero for h � 2. In general, the PACF for a
causal AR(p) process is equal to zero for h > p.

3.2.2 Moving-Average Process

Consider the case of an invertible MA process. We have

Zt D

1X
jD0

�jXt�j ) Xt D �

1X
jD1

�jXt�j CZt :

Xt is therefore directly correlated with each Xt�h; h D 1; 2; : : :. Consequently, the PACF is never
exactly equal to zero, but converges exponentially to zero. This convergence can be monotonic or
oscillating.
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4 Estimation of Mean and ACF

4.1 Estimation of Mean

The estimation is
XT D

1

T
.X1 C � � � CXT /:

Theorem 4.1 (Convergence). Suppose fXtg is stationary with mean � and ACF .h/, then

VXT D E.XT � �/
2
! 0; if .T /! 0I

TVXT D TE.XT � �/
2
!

1X
hD�1

.h/; if
1X

hD�1

j.h/j <1

as T !1.

Theorem 4.2 (Asymptotic Distribution of Sample Mean). For any stationary process fXtg given
by

Xt D �C

1X
jD�1

 jZt�j ; Zt � IID.0; �
2/

such that
P1
jD�1 j j j <1 and

P1
jD�1 j ¤ 0, the average XT is asymptotically normal:

p
T .XT � �/ N

 
0;

1X
hD�1

.h/

!

D N

0@0; �20@ 1X
jD�1

 j

1A21A D N.0; �2‰.1/2/:
4.2 Estimation of the Autocovariance and Autocorrelation Function

The estimation is

O.h/ D
1

T

T�hX
tD1

.Xt �XT /.XtCh �XT / (9)

O�.h/ D
O.h/

O.0/
: (10)

Theorem 4.3 (Asymptotic Distribution of Autocorrelations). For any stationary process fXtg
given by

Xt D �C

1X
jD�1

 jZt�j ; Zt � IID.0; �
2/
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such that
P1
jD�1 j j j <1 and

P1
jD�1 j j j j

2 <1,0B@ O�.1/:::
O�.h/

1CA N

0B@
0B@�.1/:::
�.h/

1CA ; W
T

1CA
where W D .wij /i;jD1;:::;h is given by

wij D

1X
kD1

Œ�.k C i/C �.k � i/ � 2�.i/�.k/�Œ�.k C j /C �.k � j / � 2�.j /�.k/�:

When fXtg is a white noise process, �.h/ D 0 for jhj > 0, and Theorem 4.3 implies that W is
the identity matrix Ih. The asymptotic distribution of

p
T O�.h/ converges to the standard normal

distribution N.0; 1/. This implies that for large T we can approximate the distribution of O�.h/ by
a normal distribution with mean zero and variance 1=T . This allows the construction of a 95%
confidence interval assuming that the true process is a white noise. This confidence interval is
therefore given by˙1:96T �1=2. For T D 100 this is˙0:196.

Instead of examining each correlation coefficient separately, we can test the joint hypothesis
that all correlation coefficients up to order N are simultaneously equal to zero, i.e. �.1/ D �.2/ D
� � � D �.N / D 0. As each

p
T O�.h/ has an asymptotic standard normal distribution, the sum of the

squared autocorrelation coefficients is �2 distributed with N degrees of freedom. This test statistic
is called Box-Pierce statistic:

Q D T

NX
hD1

O�2.h/ � �2N :

A refinement of the test is Ljung-Box Statistic:

Q0 D T .T C 2/

NX
hD1

O�2.h/

T � h
� �2N :

This statistic gives more weights to smaller h and less weights to higher h, as for higher h the
number of observations used to calculate O�.h/ is small. We reject the null hypothesis that all
correlation coefficients are jointly equal to zero if the statistic is very large (p-value very small).

When fXtg is a MA(q) process or an AR(p) process, confidence intervals can be constructed
in a similar fashion according to Theorem 4.3.

4.3 Estimation of the Partial Autocorrelation Function

According to Definition 3.1 ˛h and consequently ah can be estimated by b̨h D b��1
h
Oh.1/ DbR�1

h
O�h.1/. Since O�.h/ is asymptotically normally distributed, we have that b̨h is also asymptoti-

cally normal. In particular for AR(p) process
p
T b̨.h/ N.0; 1/ for T !1 and h > p:
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The result allows us to construct confidence intervals for the estimated partial autocorrelation co-
efficients.

4.4 Estimation of the Long-Run Variance

The long-run variance J is

J D

1X
hD1

.h/ D .0/C 2

1X
hD1

.h/ D .0/

 
1C 2

1X
hD1

�.h/

!
:

A first naive estimate of J is bJ T defined as

bJ T D T�1X
hD�TC1

O.h/:

However, estimates of higher order autocovariances are based on smaller samples, so their esti-
mates become less reliable. We can see only a certain number `T of autocovariances and/or use a
weighted sum: bJ T D bJ T .`T / D T

T � r

T�1X
hD�TC1

k

�
h

`T

�
O.h/

where k is a kernel function. The kernel functions are required to have the following properties:

1. k W R! Œ�1; 1� is continuous except for a finite number of points. In particular k should be
continuous at x D 0.

2. kkk2 D
R

R k
2.x/dx <1.

3. k.0/ D 1.

4. k is symmetric, i.e. k.x/ D k.�x/ for all x 2 R.

See Fig. 1 for common kernel functions1.

1From the textbook.
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Figure 1: common kernel functions
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5 Estimation of ARMA Models

In this section, we talk about the issue of estimating the coefficients of ARMA models from data.
We show that for AR(p) models we can use the Yule-Walker estimation or the OLS estimation,
while for the general ARMA models we have to resort to Maximum Likelihood estimation.

5.1 The Yule-Walker Estimator

For AR models, we can use the estimated autocovariance functions to solve for the coefficients:
for

Xt � �1Xt�1 � � � � � �pXt�p D Zt ;

multiply it by Xt ; Xt�1; : : : ; Xt�p and taking expectations respectively lead to the following sys-
tem of linear equations for ˆ D .�1; : : : ; �p/0 and �2:

.0/ � �1.1/ � � � � � �p.p/ D �2

.1/ � �1.0/ � � � � � �p.p � 1/ D 0

� � �

.p/ � �1.p � 1/ � � � � � �p.0/ D 0:

This equation system is known as the Yule-Walker equations. If can be written in matrix algebra as

.0/ �ˆ0p.1/ D �
2;0BBBB@

.0/ .1/ � � � .p � 1/

.1/ .0/ � � � .p � 2/
:::

:::
: : :

:::

.p � 1/ .p � 2/ � � � .0/

1CCCCA
0BBBB@
�1

�2
:::

�p

1CCCCA D
0BBBB@
.1/

.2/
:::

.p/

1CCCCA ;
or

.0/ �ˆ0p.1/ D �2;

�pˆ D p.1/:

The estimator is b̂ D b��1p Op.1/ D bR�1p O�h.1/;
O�2 D O.0/ � b̂0 Op.1/:

Theorem 5.1 (Asymptotic Normality of Yule-Walker Estimator). Let fXtg be an AR(p) process
which is causal with respect to fZtg � IID.0; �2/. The Yule-Walker estimator is consistent andb̂ is asymptotically normal:

p
T
�b̂ �ˆ� N

�
0; �2��1p

�
:
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In addition we have
O�2

p
�! �2:

For an AR(1) process, namely p D 1, we have �1 D .0/, 1.1/ D .1/, and the equation
simplifies to .0/� D .1/. The estimator for � is O� D O.1/= O.0/ D O�.1/. The asymptotic
distribution is

p
T
�
O� � �

�
 N

�
0;

�2

.0/

�
D N.0; 1 � �2/:

(Recall that .0/ is �2=.1 � �2/)
We mention that the Yule-Walker estimator is not suitable for the MA process, since it is no

longer consistent and the system of equations is no longer linear.

5.2 OLS Estimation of AR(p) Model

We can view the AR model as a regression model:

Xt D �1Xt�1 C � � � C �pXt�p CZt ; Zt � WN.0; �
2/:

Given the data fX1; : : : ; XT g, we can write out the equation for each XpC1; : : : ; XT :0BBBB@
XpC1

XpC2
:::

XT

1CCCCA D
0BBBB@
Xp Xp�1 � � � X1

XpC1 Xp � � � X2
:::

:::
: : :

:::

XT�1 XT�2 � � � XT�p

1CCCCA
0BBBB@
�1

�2
:::

�p

1CCCCAC
0BBBB@
ZpC1

ZpC2
:::

ZT

1CCCCA
or

Y D XˆCZ:

The solution is given by b̂ D .X 0X/�1.X 0Y /:
The standard orthogonality assumption between regressors and error is violated. Thus the OLS
estimator is not unbiased in finite samples, although

p
T
�b̂ �ˆ� is asymptotically normal:

Theorem 5.2. Under the same assumptions as in Theorem 5.1, the OLS estimator is asymptotically
distributed as

p
T
�b̂ �ˆ� N.0; �2��1p /;

and
s2T

p
! �2

where s2T D bZ0bZ=T and bZ t is the OLS residual.

In practice, �2��1p is approximated by s2T .X
0X=T /�1. Thus for large T , b̂ can be viewed as

being normally distributed as N.ˆ; s2T .X
0X/�1/. This result allows the application of the usual t

and F tests.
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5.3 Maximum Likelihood Estimation of ARMA(p; q) Model

We can not use the OLS estimation directly in case of ARMA(p; q) models, since the MA part
Zt�1; : : : ; Zt�q are not directly observable. Instead, we resort to maximum likelihood estimate.
To do that, it is necessary to assume a likelihood function of the data. We assume that the data
.X1; : : : ; XT /

0 is distributed as a multivariate normal with mean zero and variance �T . The pa-
rameters are ˇ D .�1; : : : ; �p; �1; : : : ; �q/

0 and �2. The Gaussian likelihood function is given
by

LT .ˇ; �
2
jxT / D .2�/

�T=2.det�T /�1=2 exp
�
�
1

2
x0T�

�1
T xT

�
where xT D .x1; : : : ; xT / is the observed data. We can then choose ˇ and �2 to maximize the
likelihood function.

Theorem 5.3. If fXtg is an ARMA(p; q) process with true parameters ˇ and Zt � IID.0; �2/

then the maximum-likelihood estimator has asymptotically normal distribution:

p
T
�
Ǒ
ML � ˇ

�
 N.0; V .ˇ//:

The asymptotic covariance matrix V.ˇ/ is given by

V.ˇ/ D

 
EUtU 0t EUtV 0t
EUtV 0t EVtV 0t

!�1
:

Ut is .ut ; : : : ; ut�pC1/ and Vt is .vt ; : : : ; vt�qC1/ where futg and fvtg denote autoregressive pro-
cesses defined as ˆ.L/ut D wt and ‚.L/vt D wt with wt � WN.0; 1/.

5.4 Estimation of the Orders p and q

Three criteria: Akaike information criterion (AIC), the Bayesian information criterion (BIC), and
the Hannan-Quinn information criterion (HQ criterion):

AIC.p; q/ D ln O�2p;q C .p C q/
2

T

BIC.p; q/ D ln O�2p;q C .p C q/
lnT
T

HQC.p; q/ D ln O�2p;q C .p C q/
2 ln.ln.T //

T

where O�2p;q is the variance of the residuals from an estimate of ARMA(p; q). One chooses p and
q so as to minimize the criteria. We have AIC < HQC < BIC for T � 16, so AIC delivers the
largest models, while BIC delivers the smallest models.
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5.5 Modeling a Stochastic Process

� Step 1: Transformations to achieve stationarity:

– Take differences: Yt D .1 � L/dXt . If fYtg is stationary then fXtg is said to be
integrated of order d , and we write Xt � I.d/. If fYtg is ARMA(p; q) then we call
fXtg ARIMA(p; d; q) process.

– Seasonal difference: in the case of quarterly observations Yt D .1 � L4/Xt . Since
1�L4 D .1�L/.1CLCL2CL3/, this transformation can also account for the trend.

– Filters.

� Step 2: Finding the Orders p and q: We can either analyze ACF and PACF, or use the
information criteria.

� Step 3: Checking Plausibility: After having identified a particular model, we can check:

(i) Are the residuals white noise? This can be checked by investigating the ACF of the
residuals or by applying the Ljung-Box test. If they are not this means that the model
failed to capture all the dynamics in the data.

(ii) Are the parameters plausible?

(iii) Are the parameters constant over time? Are there structural breaks?

(iv) Does the model deliver sensible forecasts? It is useful to investigate the out-of-sample
forecast performance.
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6 Integrated Processes

6.1 Definition and Properties

� Trend-stationary process:
Xt D ˛ C ıt„ƒ‚…

linear trend

C‰.L/Zt :

� Difference-stationary process:

Definition 6.1. The stochastic process fXtg is called integrated of order one or difference-
stationary, denoted as Xt � I.1/, if �Xt D Xt �Xt�1 can be represented as

�Xt D .1 � L/Xt D ı C‰.L/Zt ; ‰.1/ ¤ 0

with fZtg � WN.0; �2/ and
P1
jD0 j j j j <1.

6.1.1 Long-Run Forecast

For the trend-stationary process, the least-squares forecast given the infinite past iseP tXtCh D ˛ C ı.t C h/C  hZt C  hC1Zt�1 C � � �
We have

lim
h!1

E
�eP tXtCh � ˛ � ı.t C h/�2 D �2 lim

h!1

1X
jD0

 2hCj D 0:

Thus the long-run forecast is the linear trend. Even if Xt deviates temporarily from the trend line,
it is assumed to return to it.

The forecast for the difference-stationary process iseP t�XtCh D ı C  hZt C  hC1Zt�1 C � � �
The level of XtCh is

XtCh D .XtCh �XtCh�1/C .XtCh�1 �XtCh�2/C � � � C .XtC1 �Xt/CXt

so that eP tXtCh D eP t�XtCh CeP t�XtCh�1 C � � � CeP t�XtC1 CXt
D � � �

D Xt C ıhC . h C � � � C  1/Zt C . hC1 C � � � C  1/Zt�1 C � � �

This shows that the intercept of the long-run forecastXt is no longer a fixed number, but is stochas-
tic. For a random walk with drift fXtg, the best forecast for XtCh is PtXtCh D ıhCXt .
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6.1.2 Variance of Forecast Error

For trend-stationary process the forecast error is

XtCh �eP tXtCh D ZtCh C  1ZtCh�1 C � � � C  h�1ZtC1:
The variance is

E
�
XtCh �eP tXtCh�2 D .1C  21 C � � � C  2h�1/�2:

For h ! 1 this converges to �2
P1
jD0 

2
j < 1. This is nothing more than the unconditional

variance of Xt .
It can be shown that for the integrated process the variance is

E
�
XtCh �eP tXtCh�2 D �1C .1C  1/2 C � � � C .1C  1 C � � � C  h�1/2� �2

which goes to infinity as h!1.

6.1.3 Impulse Response Function

For the trend-stationary process

@eP tXtCh
@Zt

D  h ! 0 as h!1:

The effect of a shock thus declines with time and dies out. Shocks have therefore only transitory or
temporary effects. In the case of an ARMA process the effect declines exponentially. In the case
of integrated process

@eP tXtCh
@Zt

D 1C  1 C  2 C � � � C  h:

As h ! 1, this converges to
P1
jD0 j D ‰.1/ ¤ 0. Thus a shock will have a long-run or

permanent effect. This long-run effect is called persistence. If f�Xtg is an ARMA process then
the persistence is

‰.1/ D
‚.1/

ˆ.1/
:

6.1.4 The Beveridge-Nelson Decomposition

Theorem 6.2 (Beveridge-Nelson Decomposition). Every integrated process fXtg can be decom-
posed as

Xt D X0 C ıt„ ƒ‚ …
linear trend

C‰.1/

tX
jD1

Zj„ ƒ‚ …
random walk

Ce‰.L/Z0 � e‰.L/Zt :„ ƒ‚ …
stationary component
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Proof. First observe that

‰.L/ �‰.1/ D .1C  1LC  2L2 C � � � / � .1C  1 C  2 C � � � /

D  1.L � 1/C  2.L2 � 1/C � � �

D .L � 1/Œ 1 C  2.LC 1/C  3.L2 C LC 1/C � � � �

D .L � 1/
�
. 1 C  2 C � � � /C . 2 C  3 C � � � /LC . 3 C  4 C � � � /L2 C � � �

�
:

Thus we have ‰.L/ D ‰.1/C .L � 1/e‰.L/ where e‰.L/ DP1jD0 e jLj with e j DP1iDjC1 i .
We can then express Xt as

Xt D X0 C

tX
jD1

�Xj

D X0 C

tX
jD1

˚
ı C

�
‰.1/C .L � 1/e‰.L/�Zj 	

D X0 C ıt C‰.1/

tX
jD1

Zj C

tX
jD1

.L � 1/e‰.L/Zj
D X0 C ıt„ ƒ‚ …

linear trend

C‰.1/

tX
jD1

Zj„ ƒ‚ …
random walk

Ce‰.L/Z0 � e‰.L/Zt :„ ƒ‚ …
stationary component

To prove the last component is stationary, we need to show
P1
jD0 j

e j j <1. Indeed

1X
jD0

je j j <1D 1X
jD0

ˇ̌̌̌
ˇ̌ 1X
iDjC1

 i

ˇ̌̌̌
ˇ̌ � 1X

jD0

1X
iDjC1

j i j D

1X
jD1

j j j j � 1

where the last inequality follows from Definition 6.1.

Note that the coefficient of the random walk component,‰.1/, is the persistence. In macroeco-
nomics aggregate supply shocks are ascribed to have a long-run effect as they affect productivity.
In contrast monetary or demand shocks are viewed to have temporary effects only. Thus the per-
sistence ‰.1/ can be interpreted as a measure for the importance of supply shocks.

6.2 Unit-Root Tests

For an AR(1) model Xt D �Xt�1 CZt , if j�j < 1, then
p
T
�
O�T � �

�
 N.0; 1 � �2/:

If � D 1, then
T
�
O�T � �

�
 �

23



where � is the Dickey-Fuller distribution. To determine whether � D 1, we use the Dickey-Fuller
regression

Xt D deterministic variablesC �Xt�1 CZt :

An alternatively and numerically equivalent regression is

�Xt D deterministic variablesC ˇXt�1 CZt

where ˇ D � � 1. The tests are

H0 W � D 1 v.s. � 1 < � < 1

or
H0 W ˇ D 0 v.s. � 2 < ˇ < 0:

The test statistic can be T
�
O�T � 1

�
but a much more common choice is

t D . O�T � 1/= O� O� :

This statistic is also not asymptotically normally distributed, and its distribution can be found in
time series textbooks. If we control for lagged differenced in the regression, as in

Xt D deterministic variablesC �Xt�1 C 1�Xt�1 C � � � C p�1�Xt�pC1 CZt

then the test is the called the augmented Dickey-Fuller test (ADF-test). This autoregressive cor-
rection does not change the asymptotic distribution of the test statistic, so that the same table can
be used. The i ’s are asymptotically normal.
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Part II

Multivariate Time Series Analysis



7 Definition and Stationarity

We view Xt as .X1;t ; : : : ; Xn;t/0. The first two moments: EXt D �t and

�.t; s/ D

0B@11.t; s/ � � � 1n.t; s/
:::

: : :
:::

n1.t; s/ � � � nn.t; s/

1CA
where ij .t; s/ D E.Xi;t � �i;t/.Xj;s � �j;s/; i; j D 1; : : : ; n. Stationarity as the invariance in
the first two moments to time shifts:

Definition 7.1. A multivariate stochastic process fXtg is stationary if

1. EXt is constant;

2. EX 0tXt <1;

3. �.t; s/ D �.t C r; s C r/.

We define the correlation matrix R.h/ D .�ij .h// as

�ij .h/ D
ij .h/p

i i.0/jj .0/
:

The correlation matrix can be written as

R.h/ D V �1=2�.h/V �1=2

where V is a diagonal matrix with diagonal elements i i.0/. Clearly the diagonal of R.h/ is 1.
Note that in general �ij .h/ ¤ �j i.h/ for h ¤ 0, and it is possible that �ij .h/ > �ij .0/. Taking the
following as an example:

X1t D Zt

X2t D Zt C 0:75Zt�2

with Zt � WN.0; 1/. We have EXt D 0 and �.0/ D

 
1 1

1 1:5625

!
, �.1/ D

 
0 0

0 0

!
, and

�.2/ D

 
0 0

0:75 0:75

!
. The correlation function is R.0/ D

 
1 0:8

0:8 1

!
, R.1/ D

 
0 0

0 0

!
, and

R.2/ D

 
0 0

0:60 0:48

!
.
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Definition 7.2. A stochastic process fZtg is called multivariate white noise process with mean
zero and covariance matrix † > 0, denoted by Zt � WN.0;†/, if it is stationary, EZt D 0, and

�.h/ D

8<:† h D 0I

0 h ¤ 0:

If fZtg is i.i.d. then we write Zt � IID.0;†/.

Note that for the processZt D .ut ; ut�1/, where ut � WN.0; �2u/, we have �.1/ D

 
0 0

�2u 0

!
¤

0, so that it is not white noise according to our definition, even if each component is a white noise
process.

Taking moving averages of a white noise process it is possible to generate new stationary
processes. This leads to the definition of a linear process.

Definition 7.3. A stochastic process fXtg is called linear if

Xt D

1X
jD�1

‰jZt�j

where Zt � IID.0;†/ and
P1
jD�1 k‰jk < 1. If ‰j D 0 for all j < 0 then it is called an

VMA(1) process.
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8 Estimation of Mean and Covariance Function

The estimation of mean is O� D XT D
1
T
.X1 C � � � C XT / D .X1; : : : ; Xn/

0. The estimation is
unbiased and consistent:

Theorem 8.1. As T !1:

E.XT � �/
0.XT � �/! 0 if i i.T /! 0 for all 1 � i � n

and

TE.XT � �/
0.XT � �/!

nX
iD1

1X
hD�1

i i.h/

if
P1
hD�1 i i.h/ <1 for all 1 � i � n.

The estimator is also asymptotically normally distributed:

Theorem 8.2. For any stationary process fXtg

Xt D �C

1X
jD�1

‰jZt�j

with Zt � IID.0;†/ and
P1
jD�1 k‰jk <1, the average XT is asymptotically normal:

p
T
�
XT � �

�
 N

 
0;

1X
hD�1

�.h/

!

D N

0@0;0@ 1X
jD�1

‰j

1A†0@ 1X
jD�1

‰0j

1A1A
D N.0;‰.1/†‰.1/0/:

For the estimation of the covariance matrix

b�.h/ D
8<: 1
T

PT�h
tD1 .XtCh �XT /.Xt �XT /

0; 0 � h � T � 1b� 0.�h/; �T C 1 � h < 0:

The estimator of the correlation function isbR.h/ D bV �1=2b�.h/bV �1=2 wherebV 1=2 D diag.
p
O11.0/; : : : ;

p
Onn.0//.

The estimator converges in probability to the true covariance matrix �.h/, and
p
T
�b�.h/ � �.h/�

is asymptotically normally distributed.
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Theorem 8.3. Let fXtg be a stationary process with

Xt D �C

1X
jD�1

‰jZt�j

with Zt � IID.0;†/,
P1
jD�1 k‰jk < 1, and

P1
jD�1‰j ¤ 0. Then for each h, b�.h/ con-

verges in probability to �.h/: b�.h/ p
! �.h/:

As in the univariate case, we can define the long-run covariance matrix J as

J D

1X
hD�1

�.h/:

We can again consider the estimator

bJ .T / D T�1X
hD�TC1

k

�
h

`T

�b�.h/:

29



9 VARMA Process

Definition 9.1. A multivariate stochastic process fXtg is a vector autoregressive moving-average
process of order .p; q/, denoted as VARMA(p; q), if it is stationary and

Xt �ˆ1Xt�1 � � � � � p̂Xt�p D Zt C‚1Zt�1 C � � � C‚qZt�q

where p̂ ¤ 0, ‚q ¤ 0, and Zt � WN.0;†/. fXtg is called a VARMA(p; q) process with mean
� if fXt � �g is a VARMA(p; q) process.

We write
ˆ.L/Zt D ‚.L/Zt

whereˆ.L/ D In�ˆ1L� � � �� p̂Lp and‚.L/ D InC‚1LC� � �C‚qLq. Note thatˆ.L/ is an
n � n matrix whose elements are lag polynomials. Similarly ‚.L/ is also an n � n matrix whose
elements are lag polynomials.

9.1 The VAR(1) process

We now have a closer look at the VAR(1) process, i.e.

Xt D ˆXt�1 CZt with Zt � WN.0;†/:

We assume all eigenvalues of the matrix ˆ are absolutely strictly smaller than one. As the eigen-
values correspond to the inverses of the roots of the characteristic polynomial det.In � ˆz/, this
assumption implies that all roots lie outside the unit circle, i.e. det.In � ˆz/ ¤ 0 for all z 2 C

with jzj � 1. It can be shown that the solution to the difference equation is

Xt D Zt Cˆ1Zt�1 Cˆ
2Zt�2 C � � � D

1X
jD0

ˆjZt�j :

9.2 Causal Representation

Note that the causal representation is with respect to a general VARMA(p; q) process that can
include MA terms.

Definition 9.2. A VARMA(p; q) process fXtg with ˆ.L/Xt D ‚.L/Zt is called causal with
respect to fZtg if and only if there exists a sequence of absolutely summable matrices f‰j g. i.e.P1
jD0 k‰jk <1 such that

Xt D

1X
jD0

‰jZt�j :
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Theorem 9.3. Let fXtg ne a VARMA(p; q) process with ˆ.L/Xt D ‚.L/Zt and assume that

detˆ.z/ ¤ 0 for all z 2 C with jzj � 1:

Then the stochastic difference equation has exactly one stationary solution with causal representa-
tion

Xt D

1X
jD0

‰jZt�j ;

where f‰j g is determined by the identity

ˆ.z/‰.z/ D ‚.z/:

Below, however, we focus on VAR processes.

9.3 Computation of the Covariance Function

Let’s first consider a VAR(1) process

Xt D ˆXt�1 CZt ; Zt � WN.0;†/:

We multiply the above equation by X 0t and then X 0
t�h

to obtain

E.XtX
0
t/ D �.0/ D ˆE.Xt�1X

0
t/C E.ZtX

0
t/ D ˆ�.�1/C†;

E.XtX
0
t�h/ D �.h/ D ˆE.Xt�1X

0
t�h/C E.ZtX

0
t�h/ D ˆ�.h � 1/:

Knowing �.0/ and ˆ, the �.h/ can be computed recursively as

�.h/ D ˆh�.0/:

We can solve for �.0/ from the first equation as follows: note that �.�1/ D �.1/0 D .ˆ�.0//0 D
�.0/ˆ0, and so

�.0/ D ˆ�.0/ˆ0 C†:

We have
vec�.0/ D vec.ˆ�.0/ˆ0/C vec† D .ˆ˝ˆ/vec�.0/C vec†;

and so
vec�.0/ D .In2 �ˆ˝ˆ/�1vec†:

The covariance function of a causal VAR(p) process can be calculated by first transform the pro-
cess into the companion form as a VAR(1) process and then applies the procedure above.

31



10 Estimation of VAR Models

10.1 OLS Estimation

The estimation is complicated so we just state the main results here. Notation: we suppose we
have T Cp observations with t D T; T �1; : : : ; 0; : : : ;�pC1. And we write Y D .X1; : : : ; XT /,
ˆ D .ˆ1; : : : ; p̂/, Z D .Z1; : : : ; ZT / and

X D

0BBBB@
X1;0 � � � Xn;0 � � � X1;�pC1 � � � Xn;�pC1

X1;1 � � � Xn;1 � � � X1;�pC2 � � � Xn;�pC2
:::

: : :
:::

: : :
:::

: : :
:::

X1;T�1 � � � Xn;T�1 � � � X1;T�p � � � Xn;T�p

1CCCCA ;
namely the first row runs from 0 to �p C 1, the second row runs from 1 to �p C 2, and so on, till
the last row that runs from T � 1 to T � p. The OLS estimator is

.vecb̂/OLS D ...X 0X/�1X 0/˝ In/vecY

or b̂ D YX.X 0X/�1:
Theorem 10.1 (Asymptotic Distribution of OLS Estimator). We have

b̂ p
! ˆ

and
p
T
�

vecb̂ � vecˆ
�
 N

�
0; ��1p ˝†

�
where �p D plim 1

T
.X 0X/.

In order to make use of this result in practice, we replace �p by its estimate b�p D X 0X=T and
replace † by its estimate b† D bZbZ0=T D .Y � b̂X 0/.Y � b̂X 0/0=T .

10.2 Yule-Walker Estimation

We can again use the Yule-Walker estimation for VAR models. Consider first a VAR(1) model. In
this case the Yule-Walker equation is simply

�.0/ D ˆ�.�1/C†

�.1/ D ˆ�.0/

32



or
�.0/ D ˆ�.0/ˆ0 C†

�.1/ D ˆ�.0/:

The solution is
ˆ D �.1/�.0/�1

† D �.0/ � �.1/�.0/�1�.1/0:

Replacing the theoretical moments by their empirical counterparts, we get the Yule-Walker esti-
mator for ˆ and †: b̂ D b�.1/b�.0/�1b† D b�.0/ � b̂b�.0/b̂0:
In general the Yule-Walker estimator for VAR(p) is given by the solution to the system of equations8<:b�.h/ D

Pp
jD1

b̂
j
b�.h � j /; h D 1; : : : ; pb† D b�.0/ � b̂1b�.�1/ � � � � � p̂

b�.�p/:
The Yule-Walker estimator and OLS estimator are asymptotically equivalent. In fact, they

yield very similar estimates even for finite samples. However, as in the univariate case, the Yule-
Walker estimator always delivers, in contrast to the least-square estimator, coefficient estimates
with the property det.In � Ô 1z � � � � � Ô pzp/ ¤ 0 for all z 2 C with jzj � 1. Thus, the
Yule-Walker estimator guarantees that the estimated VAR possesses a causal representation. This,
however, comes at the price that the Yule-Walker estimator has a larger small-sample bias than the
least-squares estimator, especially when the roots of ˆ.z/ get close to the unit circle. Thus, it is
generally preferable to use the least-squares estimator in practice.
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11 Forecasting with VAR Models

For VAR(1) model, the forecast is
PTXTCh D ˆ

hXT :

Note that XTCh D ZTCh CˆZTCh�1 C � � � Cˆh�1ZTC1 CˆhXT . So the covariance matrix of
the forecast error is

E.XTCh �ˆ
hXT /.XTCh �ˆ

hXT /
0
D †Cˆ†ˆ0 C � � � Cˆh�1†ˆ0h�1

D

h�1X
jD0

ˆj†ˆ0j :

For example, for h D 1, the error is Zt , so the covariance matrix of the forecast error is †. For
h D 2, the covariance matrix of the forecast error is †Cˆ†ˆ0, etc.

The forecast for VAR(p) can be computed recursively, as in Section 3.1.1. For example, for
h D 1, the forecast is

PTXTC1 D ˆ1XT Cˆ2XT�1 C � � � C p̂XTC1�p

with forecast error XTC1 � PTXTC1 D Zt which has mean zero and covariance matrix †. For
h D 2 the forecast is

PTXTC2 D .ˆ
2
1Cˆ2/XTC.ˆ1ˆ2Cˆ3/XT�1C� � �C.ˆ1 p̂�1C p̂/XTC2�pC.ˆ1 p̂/XTC1�p:

In general, we can write a VAR(p) process in its causal representation as

Xt D Zt C‰1Zt�1 C‰2Zt�2 C � � � :

Thus

XTCh D ZTCh C‰1ZTCh�1 C‰2ZTCh�2 C � � � C‰hZT C‰hC1Zt�1 C � � �

The forecast for XTCh would be

PTXTCh D ‰hZT C‰hC1Zt�1 C � � �

so that the forecast error is

error D ZTCh C‰1ZTCh�1 C � � � C‰h�1ZTC1:

The variance of the forecast error is thus

†C‰1†‰
0
1 C � � � C‰h�1†‰

0
h�1 D

h�1X
jD0

‰j†‰
0
j :
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11.1 Forecasting with Estimated Parameters

Note that in the above derivations we assumed that the true parameters are known. If we replace
the parameters by their estimates, then the forecast errors would increase:

XTCh �bPTXTCh D .XTCh � PTXTCh/C
�
PTXTCh �bPTXTCh�

D

h�1X
jD0

‰jZTCh�j C
�
PTXTCh �bPTXTCh� :

The covariance matrix of the forecast errors would then be different as well. For example, for
h D 1 and p D 1, the covariance matrix is

†C
n

T
† D

T C n

T
†:

For h D 1 and general p the covariance matrix is

†C
np

T
† D

T C np

T
†:

(This is only an approximation as we applied asymptotic results to small samples)

11.2 Selecting the Order

The selection of order p for VAR models can also be based on information criteria like AIC, BIC
and HQC. We omit the formula here.

11.3 Evaluating the Forecasts

The forecasts can be evaluated by:

1. Root-mean-squared-error: vuut1

h

TChX
TC1

.bX it �Xit/2:

2. Mean-absolute error:
1

h

TChX
TC1

jbX it �Xit j:
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12 Interpretation and Identification of VAR Models

12.1 Wiener-Granger Causality

Consider Xt D .X1t ; X2t/0. Denote the variance of the forecast error for Xit by v1.h/, and denote
Qv1.h/ the variance of the forecast error for Xit when X2t is omitted from the model. According to
Granger, the second variable X2t causes or is causal for X1t if

v1.h/ < Qv1.h/ for some h � 1;

i.e. the presence of fX2tg helps in improving the forecast for fX1tg.
In the context of VAR(1) model, the one-period forecast is

PTXTC1 D

 
PTX1;TC1
PTX2;TC1

!
D ˆXT D

 
�11 �12

�21 �22

! 
X1;T

X2;T

!
and so

PTX1;TC1 D �11X1T C �12X2T :

If �12 D 0 then the second variable does not contribute to the one-period forecast of the first
variable. So the test for Granger-causality is a test about whether �12 D 0. In general the one-
period forecast for VAR(p) models is

PTX1;TC1 D �
.1/
11 X1T C �

.1/
12 X2T C � � � C �

.p/
11 X1;TC1�p C �

.p/
12 X2;TC1�p

and so the test for Granger-causality is about whether �.1/12 D � � � D �
.p/
12 D 0. The hypothesis

can be tested using a Wald test (F -test). In the context of a VAR(1) model a simple t -test is also
possible.

12.2 Structural and Reduced Form

We follow the notations used in [Neu16]. The notation is meant to be general and inclusive, as it
involved two structural matrices A and B .

Structural form of SVAR:

AXt D �1Xt�1 C � � � C �pXt�p C BVt

where the diagonals of A and B are normalized to 1s (by normalization we mean divide every row
by the diagonal element) and Vt � WN.0;�/ with � being a diagonal matrix. The reduced form
is

Xt D A
�1�1Xt�1 C � � � C A

�1�pXt�p C A
�1BVt

D ˆ1Xt�1 C � � � C p̂Xt�p CZt :
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The relationship between the structural shocks Vt and the reduced form disturbances is gicen by

Zt D A
�1BVt :

The covariance matrix of †, the one that we can directly estimate, is

† D A�1B�B 0A0�1: (11)

The identification problem is to infer A, B and� from estimation of †. The first step is to assume
that � is diagonal, or is the identity matrix. This corresponds to the assumption that the structural
shocks are orthogonal.

Let’s take n D 2 as example. Assume for simplicity A D I2 (We can always do so. For
example we can let B� D A�1B and then normalize the diagonal of B� to 1s. Then Zt D B�Vt

and † D B��B�
0

) We can write out the equation † D B�B 0: 
�21 �12

�21 �22

!
D

 
1 b12

b21 1

! 
!21 0

0 !22

! 
1 b21

b12 1

!

D

 
!21 C b

2
12!

2
2 b21!

2
1 C b12!

2
2

b21!
2
1 C b12!

2
2 b221!

2
1 C !

2
2

!
This gives the following system of equation8̂̂̂<̂

ˆ̂:
�21 D !

2
1 C b

2
12!

2
2

�12 D b21!
2
1 C b

2
12!

2
2

�22 D b
2
21!

2
1 C !

2
2 :

(12)

We have four unknowns
˚
b12; b21; !

2
1 ; !

2
2

	
and three equations, so we see from here that we

need one additional identification assumption.

12.3 Short-Run Restrictions

Short-run restrictions are essentially restrictions on the coefficients of A and/or B . [Sim80] pro-
posed a simple recursive scheme. The assumption is that B is a lower triangular matrix, so that
b12 D 0. This is compatible with the Cholesky decomposition of †. The theorem says that

Let A be a Hermitian positive-definite matrix. Then

A D LDL�

where L is lower triangular with ones on the diagonal and D is a diagonal matrix.
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As Zt D BVt D

 
1 0

b21 1

! 
V1t

V2t

!
, we have8<:Z1t D V1tZ2t D b21V1t C V2t :

The Interpretation is that V1t is the only structural shock which has an effect on X1t in period t .
All other shocks have no contemporaneous effect (think about e.g. a monetary shock cannot have
immediate effect on output due to sticky prices) Since Z1t D V1t we have �21 D !21 so that we
solved !21 . The second variable X2t is affected by fV1t ; V2tg (if n > 2 then we are saying X2t
is only affected by the two shocks and not by V3t ; : : : ; Vnt ). We have Z2t D b21V1t C V2t so
�21 D Cov.Z2t ; Z1t/ D b21!

2
1 C 0 D b21!

2
1 (note the orthogonality assumption also enters here)

From this we can derive b21 and then !22 from �22 D Cov.Z2t ; Z2t/ D !
2
2 C b

2
21!

2
1 .

12.4 Interpretation of SVAR Models

12.4.1 Impulse Response Functions

After we have identified the model, it is now possible to compute the impulse response functions
of the structural shocks. Recall Zt D A�1B and so

Xt D Zt C‰1Zt�1 C‰2Zt�2 C � � �

D A�1BVt C‰1A
�1BVt�1 C‰2A

�1BVt�2 C � � �

And so the effect of the j -th structural disturbance (Vj;t ) on the i -th variable (Xi;t ) after h periods
is the .i; j / element of the matrix ‰hA�1B (i is the row, manifesting to which variable in Xt we
address to, and j points to Vj ):

@Xi;tCh

@Vj;t
D
�
‰hA

�1B
�
ij
:

12.4.2 Forecast Error Variance Decomposition (FEVD)

After we have identified the model, it is also possible to calculate how much forecast variances
that each structural shock contribute to. A concrete statement is: we get error in forecasting Xit
(for example this variable can be output), and the variance of the error is v.h/. How much is the
variance of the first structural shock V1t (namely !21 ) contribute to v.h/? How much is the variance
of the second structural shock V2t (namely !22 ) contribute to v.h/? etc. This gives us a hint as to
which shock gives rise to the most unexpected movements of the variable of interest.

Recall that the covariance matrix of the forecast error is

MSE.h/ D

h�1X
jD0

‰j†‰
0
j :
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Since by Eq. (11) † D A�1B�B 0A0�1, we have
h�1X
jD0

‰j†‰
0
j D

h�1X
jD0

‰jA
�1B�B 0A0�1‰0j :

For example, for h D 1, and assume A D I and � D I , the equation is

† D BB 0:

The diagonal ofMSE.h/ is the variances of the forecast error for variablesX1t ; : : : ; Xnt . Expand-
ing the right, each diagonal element of MSE.h/ should be a linear combination of f!21 ; : : : ; !

2
ng.

m
.h/
i i D d

.h/
i1 !

2
1 C � � � C d

.h/
in !

2
n

where m.h/i i is the i -th diagonal element of MSE.h/. Now divide m.h/i i D V .forecast error for Xi/
by each component in the sum. We then get what is the proportion of V .Vjt/ D !2j in the error
variance for each structural shock j D 1; : : : ; n.

12.5 Long-Run Restrictions

Instead of restricting some coefficients of A and/or B to be zero, we can use long-run restrictions.
Long-run restrictions constrain the long-run effect of structural shocks. Note that the technique
only makes sense if some integrated variables are involved, because in the stationary case the
effects of all shocks vanish eventually.

The technique was first proposed by [BQ89] and we replicate the example in the paper. They
analyzed a two-variable system consisting of logged real GDP denoted by fYtg and the unemploy-
ment rate fUtg. Logged GDP is typically integrated of order one, whereas fUtg is considered to be
stationary. Thus we can apply the VAR approach to the stationary process fXtg D f.�Yt ; Ut/0g.
Assuming that fXtg is already demeaned and follows a causal VAR process, we have the following
representations

Xt D

 
�Yt

Ut

!
D ˆ1Xt�1 C � � � C p̂Xt�p CZt

D ‰.L/Zt D Zt C‰1Zt�1 C‰2Zt�2 C � � �

For simplicity we assume A D I2 so that

Zt D BVt D

 
1 b12

b21 1

! 
vdt

vst

!
where Vt D .vdt ; vst/

0 � WN.0;�/ with � D diag.!2
d
; !2

d
/. Thereby fvdtg and fvstg denote

demand and supply shocks respectively. A demand shock in period t on GDP growth in period
t C h is

@�YtCh

@vdt
D Œ‰hB�11:
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As YtCh can be written as YtCh D �YtChC�YtCh�1C� � �C�YtC1CYt , the effect of the demand
shock on the level of logged GDP is

@YtCh

@vdt
D

hX
jD0

Œ‰jB�11 D

24 hX
jD0

‰jB11

35
11

:

[BQ89] propose that the long-run effect of the demand shock on the level of logged GDP should
be zero:

lim
h!1

@YtCh

@vdt
D

1X
jD0

Œ‰jB�11 D 0:

This implies
1X
jD0

‰jB D

0@ 1X
jD0

‰j

1AB D ‰.1/ 1 b12

b21 1

!
D

 
0 �

� �

!
:

This restriction is sufficient to infer b21 from the relation Œ‰.1/�11 � 1C b21Œ‰.1/�12 D 0:

b21 D �
Œ‰.1/�11

Œ‰.1/�12
D �

Œˆ.1/�1�11

Œˆ.1/�1�12
:

The long-run effect of the supply shock is left unrestricted and is therefore nonzero in general.
Note that b21 depends on ˆ.1/, and thus on ˆ1; : : : ; p̂. The results are therefore more sensitive
to specifications of the VAR model.

After we have derived b21, we have three unknowns fb12; !2d ; !
2
s g and three equations (Eq. (12))

so we can then solve for the unknowns.

12.5.1 The General Approach

The general case of long-run restrictions has a structure similar to the case of short-run restrictions.
Recall our structural model

AXt D �1Xt�1 C � � � C �pXt�p C BVt ; Vt � WN.0;�/:

We can write A.L/Xt D BVt where A.L/ D A � �1L � � � � � �pL
p. The reduced form is

ˆ.L/Xt D Zt ; Zt � WN.0;†/. As can be seen from the relation Xt D ˆ.L/�1Zt , the long-run
variance is

J D V .Xt/ D ˆ.1/
�1†ˆ.1/�1

0

D ‰.1/†‰.1/0: (13)

We can the substitute † by A�1B�B 0A
0�1 in Eq. (13) to get

J D

�
ˆ.1/�1A�1B

�
�

�
B 0A

0�1ˆ.1/�1
0

�
D

�
‰.1/A�1B

�
�

�
B 0A

0�1‰.1/0
�
:
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We’d like to identify A, B and � from the estimation bJ . The identification is through zero re-
strictions on some elements of‰.1/A�1B , orˆ.1/�1A�1B . Setting the ij -th element Œ‰.1/A�1B�ij
to zero amounts to set the cumulative effect of the j -th disturbance of the j -th structural distur-
bance Vj;t on the i -th variable equal to zero. If the i -th variable entersXt in first differences, as was
the case in [BQ89], this zero restriction restrains the long-run effect on the level of that variable.

One case is to assume A D In and ‰.1/B is lower triangular. In this case B and � can be
estimated from the Cholesky decomposition of the estimated long-run variancebJ . LetbJ D OL OD OL0
be the Cholesky decomposition. We can write this as

bJ D OL OD OL0
D Ô .1/�1

�
Ô .1/ OL OU �1

� �
OU OD OU

� �
OU �1 OL0 Ô .1/0

�
Ô .1/�1

0

AsbJ D Ô .1/�1B O�B 0 Ô .1/�10

we can estimateB as
�
Ô .1/ OL OU �1

�
and� as

�
OU OD OU

�
. The matrix

U D diag. Ô .1/ OL/ is used to assure the normalization of the diagonal of OB to 1.

In the above we used the method of moments approach, i.e. we used the long-run variance J
(second moment) to estimate the parameters. Another approach is instrumental variable (IV). As
for this example, we write the reduced form as

�Xt D �ˆ.1/Xt�1 C ê1�Xt�1 C � � � C êp�1�Xt�pC1 CZt ;
where êj D �Pp

iDjC1ˆi ; j � 1; 2; : : : ; p � 1. Assume B D In so that AZt D Vt . Multiply
the above equation by A:

A�Xt D �Aˆ.1/Xt�1 C Aê1�Xt�1 C � � � C Aêp�1�Xt�pC1 C Vt : (14)

Now assume Aˆ.1/ is lower triangular, so that ŒAˆ.1/��1 is upper triangular. Recall that the
long-run variance in this case is

J D

�
ˆ.1/�1A�1

�
�

�
ˆ.1/�1A�1

�0
D

�
Aˆ.1/

��1
�

�
Aˆ.1/

��10

and so this amounts to saying that the structural shocks fV2t ; : : : ; Vntg have no long-run impact
on the first variable X1t . It is therefore possible to estimate the coefficients fA12; : : : ; A1ng using
X2;t�1; : : : ; Xn;t�1 as instruments.

For the n D 2 case Eq. (14) is 
1 A12

A21 1

! 
� QX1t

� QX2t

!
D �

 
ŒAˆ.1/�11 0

ŒAˆ.1/�21 ŒAˆ.1/�22

! 
QX1;t�1
QX2;t�1

!
C

 
V1t

V2t

!
:
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Multiply this out:8<:� QX1t D �A12� QX2t � ŒAˆ.1/�11 QX1;t�1 C V1t� QX2t D �A21� QX1t � ŒAˆ.1/�21 QX1;t�1 � ŒAˆ.1/�22 QX2;t�1 C V2t :

Thereby � QX1t and � QX2t denote the OLS residuals from a regression of �X1t and �X2t on˚
�X1;t�1; �X2;t�1; : : : ; �X1;t�pC1; �X2;t�pC1

	
:

We see that QX2;t�1 is a valid instrument for � QX2t (relevance is from the second equation, and
exclusion restriction is from the fact that it does not appear in the first equation). Thus we can
estimate A12 using the IV approach. For the estimation of A21, we can use the residuals from the
first equation as instruments because V1t and V2t are assumed to be uncorrelated.
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13 Appendix

� vec operator: stack columns of a matrix A on top of each other:

vec.A/ D Œa11; : : : ; am1; a12; : : : ; am2; : : : ; a1n; : : : ; amn�T :

For example, for A D

 
a b

c d

!
, the vectorization is vec.A/ D

0BBB@
a

c

b

d

1CCCA.

� Kronecker product: if A is an m � n matrix and B is a p � q matrix, then the Kronecker
product A˝ B is the mp � nq block matrix:

A˝ B D

0B@a11B � � � a1nB
:::

: : :
:::

am1B � � � amnB

1CA :
Example:

 
1 2

3 4

!
˝

 
0 5

6 7

!
D

0BBBB@
1 �

 
0 5

6 7

!
2 �

 
0 5

6 7

!
3 �

 
0 5

6 7

!
4 �

 
0 5

6 7

!
1CCCCA D

0BBB@
1 � 0 1 � 5 2 � 0 2 � 5

1 � 6 1 � 7 2 � 6 2 � 7

3 � 0 3 � 5 4 � 0 4 � 5

3 � 6 3 � 7 4 � 6 4 � 7

1CCCA D
0BBB@
0 5 0 10

6 7 12 14

0 15 0 20

18 21 24 28

1CCCA :
� Property:

vec.ABC/ D .C T ˝ A/vec.B/:
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