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Notation

X set
f function
f ∶ X → Y function from X to Y
f (A) image of A
f−1(B) inverse image of B
(X) power set of X
ℕ {1, 2,…}
ℚ the rational number
ℝ the real number
[a, b] real interval
d(⋅, ⋅) metric
(X, d) metric space
dp(⋅, ⋅) p-metric
d∞(⋅, ⋅) uniform metric
‖ ⋅ ‖p p-norm
[a, b] all bounded real-valued functions on [a, b]
[a, b] all continuous real-valued functions on [a, b]
B(x, �) open ball around x with radius � > 0
B̄(x, �) closed ball around x with radius � > 0
sup least upper bound
inf greatest lower bound
lim sup limit superior
lim inf limit inferior
(X,  ) topological space
 topology; collection of open sets
 = �() topology generated by basis 
 = �() topology generated by subbasis 
 the collection of closed set in (X,  )
A◦ interior of A
Ā closure of A
A′ limit points of A
(xn) sequence
Λ index set
∏

�∈ΛX� Cartesian product of {X�}�∈Λ



1 Metric Spaces

DEFINITION 1.1 A metric d on a set X is a function from X ×X to ℝ that satisfies
a) d(x, y) = d(y, x) for any x, y ∈ X (Symmetry);
b) d(x, y) ≥ 0 for any x, y ∈ X, with d(x, y) = 0 iff x = y (Positive-definiteness);
c) d(x, y) ≤ d(x, z) + d(z, y) for any z ∈ X (Triangle inequality).

A metric space is a pair (X, d) where X is a set and d is a metric on it.

• Metric space is just a straightforward generalization of the Euclidean space ℝn.
• The norm ‖ ⋅ ‖p ∶ ℝn → [0,∞) given by x → ‖x‖p =

(
∑n
i=1 |xi|

p)1∕p defines the metric dp with
dp(x, y) = ‖x − y‖p. I shall sometimes use the two interchangeably to simplify notations.

• We prove Minkowski’s inequality.

Theorem 1.2 (Minkowski’s Inequality). Let x = (x1,… , xn), y = (y1,… , yn) ∈ ℝn, and let 1 ≤
p <∞. Then

‖x + y‖p ≤ ‖x‖p + ‖y‖p. (1)
♢

Proof. Let x0 = (x01,… , x0n) and y0 = (y01,… , y0n) be the unit vectors for x and y respectively, so that
x = ax0 and y = by0, where a = ‖x‖p and b = ‖y‖p. Since the function x → |x|p is convex, for
t ∈ [0, 1] we have

|

|

|

tx0i + (1 − t)y
0
i
|

|

|

p
≤ t ||

|

x0i
|

|

|

p
+ (1 − t) ||

|

y0i
|

|

|

p (2)
for each i = 1,… , n. Summing over i, we have

‖

‖

tx0 + (1 − t)y0‖‖
p
p ≤ t + (1 − t) = 1. (3)

With t = a
a+b the above becomes

‖

‖

‖

‖

ax0 + by0
a + b

‖

‖

‖

‖

p

p
≤ 1, (4)

so that
‖x + y‖pp ≤ (a + b)

p = (‖x‖p + ‖y‖p)p. (5)
◽

• The following proposition justifies our definition of the metric d∞.

Proposition 1.3. Let the metric dp be defined by

dp(x, y) =
( n
∑

i=1
|xi|

p

)1∕p
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for 1 ≤ p <∞, and let the metric d∞ be defined by

d∞(x, y) = max{|x1 − y1|, |x2 − y2|,… , |xn − yn|}.

Then as p→∞, dp(x, y)→ d∞(x, y). ♦

Proof. We shall prove ‖x‖p → ‖x‖∞ as p → ∞. Fix � > 0 and an x ∈ ℝn, and let S� ∶= {1 ≤ i ≤
n ∶ |xi| ≥ ‖x‖∞ − �}. For example, if x = (x1, x2, x3, x4, x5) = (2, 3, 5, 7, 6.9) ∈ ℝ5 and � = 0.2,
then ‖x‖∞ = 7, ‖x‖∞ − � = 7 − 0.2 = 6.8, and since 7 > 6.8, 6.9 > 6.8, we have S� = {4, 5}, the
index of the last two slots. We also use |S�| to denote the number of elements in S�, so |S�| = 2 in
the above example. Now,

‖x‖p ≥
(

∑

S�

(‖x‖∞ − �)
)1∕p

=
(

‖x‖∞ − �
)

|S�|
1∕p.

Let p→∞, we have
lim
p→∞

‖x‖p ≥ ‖x‖∞ − �.

Since � is arbitrary, we have

lim
p→∞

‖x‖p ≥ ‖x‖∞. (6)
On the other hand, |xi| ≤ ‖x‖∞ for every i = 1, 2,… , n, so for p > q,

‖x‖p =
( n
∑

i=1
|xi|

p

)1∕p

=

( n
∑

i=1
|xi|

p−q
|xi|

q

)1∕p

≤ ‖x‖(p−q)∕p∞ ‖x‖q∕pq .

As p→∞, (p − q)∕p→ 1, q∕p→ 0, so we have

lim
p→∞

‖x‖p ≤ ‖x‖∞. (7)
Combining Eq. (6) and Eq. (7) we see that

lim
p→∞

‖x‖p = ‖x‖∞. (8)
This proves that as p→∞, the metric dp indeed converges to d∞, since

lim
p→∞

dp(x, y) = lim
p→∞

‖x − y‖p = ‖x − y‖∞ = d∞(x, y). ◽
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DEFINITION 1.4 Let A be a subset of ℝ. A function f ∶ A→ ℝ is called subadditive if
f (a + b) ≤ f (a) + f (b)

for all a, b ∈ A.

Lemma 1.5. If a function f is concave, and f (0) ≥ 0, then f is subadditive. ✽

Proof. Since f is concave, for t ∈ [0, 1], f (tx) = f (tx + (1 − t) ⋅ 0) ≥ tf (x) + (1 − t)f (0) ≥ tf (x).
Thus
f (a) + f (b) = f

(

(a + b) a
a + b

)

+ f
(

(a + b) b
a + b

)

≥ a
a + b

f (a + b) + b
a + b

f (a + b) = f (a + b).

◽

Corollary 1.6. Let (X, d) be a metric space. If f ∶ [0,∞) → ℝ with f (0) = 0 is strictly increasing
and concave, then f◦d is again a metric on X. ♠

Proof. Symmetry and positive-definiteness for f◦d is straightforward. For the triangle inequality,
since d(x, y) ≤ d(x, z) + d(z, y) for the metric d, we have

f (d(x, y)) ≤ f (d(x, z) + d(z, y)) ≤ f (d(x, z)) + f (d(z, y)).

The first inequality holds since f is increasing on [0,∞), and the second inequality follows from the
above lemma. ◽

• Let (X, d) be a metric space. Then √

d is another metric on X, since the function f (x) = √

x is
concave and strictly increasing on [0,∞) with f (0) = 0.

• Let (X, d) be a metric space. Then

d̃(x, y) =
d(x, y)

1 + d(x, y)

defines another metric on X, since f (x) = x
1+x

is increasing and concave on [0,∞). What’s more,
themetric d̃ is bounded, since limx→∞

x
1+x

= 1. Later wewill see that d̃ generates the same topology
on X as d, so that the concept of “boundedness" is really just about metric, and has nothing to do
with topology.

• By contrast, for a metric d on X, the function d2 is no longer a metric on X. For example, let d be
the Euclidean distance on the real line, and take x = 0, y = 1, and z = 0.5 onℝ. Then d2(x, y) = 1,
but d2(x, z) + d2(z, y) = 0.52 + 0.52 = 0.25 + 0.25 = 0.5, so that the triangle inequality fails.

• Note that, for a set X, d ∶ X ×X → ℝ given by d(x, y) = 0 for all x, y ∈ X is not a metric, since
positive-definiteness does not hold for d.
Let [a, b] denote the space of bounded real-valued functions on [a, b]. Define a metric d on

[a, b] by
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d(f, g) = sup
t∈[a,b]

|f (t) − g(t)|.

Then it is easy to see that d is a metric on [a, b]. It is called the uniform metric on [a, b].
DEFINITION 1.7 Let (fn) be sequence of real-valued functions defined on A ⊂ ℝ. We say that
(fn) converges uniformly to f if for every � > 0, there isN > 0 such that |fn(x) − f (x)| < � for
all n ≥ N and all x ∈ A.
The following proposition is immediate.

Proposition 1.8. fn → f uniformly if and only if limn→∞ d(fn, f ) = 0. In other words, fn → f
uniformly if and only if (fn) ⊂ [a, b] converges to f ∈ [a, b] with respect to the uniform metric. ♦

Proposition 1.9. Let fn be a sequence of continuous functions defined on [a, b] ⊂ ℝ. If fn → f
uniformly, then f is continuous. ♦

Proof. Let � > 0. To prove f is continuous at a particular x0 ∈ [a, b], we need to find a � > 0 such
that |x − x0| < � ⇒ |f (x) − f (x0)| < �. Now, according to triangle inequality,

|f (x) − f (x0)| ≤ |f (x) − fn(x)| + |fn(x) − fn(x0)| + |fn(x0) − f (x0)|.

Each of the three terms on the right can be made small. Specifically, we can choose n ≥ N for
some N such that |f (x) − fn(x)| < �∕3 and |fn(x0) − f (x0)| < �∕3, by uniform convergence of fn
to f . We can also choose some � > 0 such that |x − x0| < � implies that |fn(x) − fn(x0)| < �∕3,
because each fn is assumed to be continuous. Then

|f (x) − f (x0)| ≤
�
3
+ �
3
+ �
3
= �.

This proves the limiting function f is indeed continuous. ◽

Corollary 1.10. Let [a, b] denote the space of continuous real-valued functions defined on [a, b].
Then [a, b] is closed in [a, b]. ♠

Proof. [a, b] is closed in [a, b] if and only if for every sequence (fn) in [a, b] that converges to
some f ∈ [a, b], f ∈ [a, b]. This is exactly what the above proposition says. ◽

• Another metric on [a, b] is given by

d(f, g) = ∫

b

a
|f (x) − g(x)|dx.

Proof. Symmetry is obvious. For positive definiteness, it suffices to prove that for f ∈ [a, b],
∫ b
a |f (x)|dx = 0 implies |f | = 0 on [a, b] (so that f = 0 on [a, b]). Suppose to the contrary,
|f (x0)| ≠ 0 for some x0 ∈ [a, b], say f (x0) > 0. Then since f is continuous on [a, b], f (y) > 0 for
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all y sufficiently close to x0. Indeed, choose � > 0 such that f (x0) − � > 0. Then there exists � > 0
such that |y − x0| < � implies |f (y) − f (x0)| < �, so that 0 < f (x0) − � < f (y). Now

∫

b

a
|f (x)|dx ≥ ∫

x0+�

x0−�
|f (x)|dx > 0,

contrary to our assumption that the integral on the left is zero. For triangle inequality, since |f + g| ≤
|f | + |g|, we have

∫

b

a
|f + g| ≤ ∫

b

a
(|f | + |g|) = ∫

b

a
|f | + ∫

b

a
|g|.

◽

The norm ‖ ⋅ ‖1 ∶ [a, b] → ℝ, f → ∫ b
a |f | gives rise to the metric d above. Similarly, for

1 ≤ p <∞ we can define a norm ‖ ⋅ ‖p on [a, b] by

f → ‖f‖p =
(

∫

b

a
|f |p

)1∕p

.

This can be seen as a generalization of the metric dp on ℝn to the function space [a, b]. The proof of
the Minkowski’s inequality

(

∫

b

a
|f + g|p

)1∕p

≤
(

∫

b

a
|f |p

)1∕p

+
(

∫

b

a
|g|p

)1∕p

is basically same as Theorem 1.2, with integration in place of summation in Eq. (2). The crucial step
is the convexity of the function f (x) = xp for 1 ≤ p <∞.

1.1 Banach Fixed Point Theorem

DEFINITION 1.11 (CONTRACTION) Let (X, d) be a metric space. A mapping T ∶ X → X is
called a contraction on X if there is � ∈ (0, 1) such that

d(Tx, T y) ≤ �d(x, y)

for all x, y ∈ X.

Theorem 1.12 (Banach Fixed Point Theorem). Let (X, d) be a nonempty complete metric space
and suppose T ∶ X → X is a contraction. Then there is a unique x ∈ X such that Tx = x. ♢

Proof. 1. First, for a contraction, its fixed point is necessarily unique. For suppose x = Tx and
x′ = Tx′ are two fixed points of T . Then

d(x, x′) = d(Tx, T x′) ≤ �d(x, x′).

Since � < 1, we have d(x, x′) = 0 and thus by positive-definiteness of d we have x = x′.
2. Pick an arbitrary point x0 ∈ X and define a sequence (xn) by
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x1 = Tx0;

x2 = Tx1 = T 2x0;

x3 = Tx2 = T 3x0;
⋮

xn = Txn−1 = T nx0;
⋮

From Definition 1.11, a contraction is continuous. If our (xn) converges to some x ∈ X, then
from xn = Txn−1, we have

x = lim
n→∞

xn = lim
n→∞

Txn−1 = T
(

lim
n→∞

xn−1
)

= Tx,

so that x ∈ X will be a fixed point of T .
3. We show (xn) is Cauchy, thus converges to a point x ∈ X. Now,

d(xm+1, xm) = d(Txm, T xm−1)
≤ �d(xm, xm−1)
= �d(Txm−1, T xm−2)

≤ �2d(xm−1, xm−2)
⋮

≤ �md(x1, x0).

Then by the triangle inequality, we have
d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) +⋯ + d(xn−1, xn)

≤ (�m + �m−1 +⋯ + �n−1)d(x1, x0)

= �m

1 − �
(1 − �n−m)d(x1, x0)

≤ �m

1 − �
d(x1, x0)→ 0 as m→∞.

This proves (xn) is Cauchy, and thus (xn) converges by completeness of X. ◽

1.2 Characterization of Compact Metric Spaces

We have proved in class that a compact subset of a metric space is closed and bounded. The converse
is true for ℝn (see Corollary 9.13), but may not be true in general, the simplest example of which
is the discrete metric on an infinite set X. Then the question is, what is the necessary and sufficient
condition for a general metric space to be compact?
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DEFINITION 1.13 (X, d) is totally bounded if given � > 0 (so that X ⊂
⋃

x∈X B(x, �)), there issome finite x1,… , xn in X such that X ⊂
⋃n
i=1 B(xi, �).

Observation 1.14. Every compact metric space is totally bounded. ☉

Theorem 1.15. (X, d) is compact if and only if it is complete and totally bounded. ♢

Proof. By Theorem 9.23 below, compactness and sequential compactness are equivalent for metric
spaces. If (X, d) is sequentially compact, then it is obviously complete, since if a Cauchy sequence
has a convergent subsequence, the sequence converges to the same limit. X, being compact, is also
totally bounded.

Now suppose (X, d) is complete and totally bounded. Let (xn) be a sequence in X. We shall find
a convergent subsequence of (xn). Note that any subset ofX is also totally bounded, so we may apply
totally boundedness to smaller and smaller subsets of X to capture a Cauchy subsequence.

First, finitely many B(x, 1), x ∈ X cover X, so a single B(1) must capture infinitely many items
of (xn). Pick xn1 ∈ B(1). Finitely many B(x, 1∕2), x ∈ B(1) cover B(1), so infinitely many items of
{xn}∩B(1)must fall into at least one such B(1∕2). Pick xn2 ∈ B(1∕2)∩B(1). Similarly, we can pick
xn3 ∈ B(1∕3) ∩ B(1∕2)......Continuing this way, we obtain a subsequence (xnk) such that

xnk ∈ B(
1
N
) whenever k ≥ N.

The subsequence (xnk) is thus Cauchy, for

d(xnk , xnl ) ≤
1
N

whenever k, l ≥ N.

SinceX is assumed to be complete, (xnk) converges. This proves every sequence inX has a convergent
subsequence. ◽

2 Sets

• Two sets A and B are equal (A = B) if and only if A ⊆ B and B ⊆ A. This simple fact is used
extensively in our proof of various theorems and propositions in topology. For example, if we want
to prove G = U ∩ Y , then we may prove G ⊆ (U ∩ Y ) as well as (U ∩ Y ) ⊆ G.

• A ⊆ B means for every x ∈ A, x is also in B.
• A ∪ B = {x ∶ x ∈ A or x ∈ B}; A ∩ B = {x ∶ x ∈ A and x ∈ B}.
• If for a family of sets {Ui}i∈I , Ui ⊆ X for each index i ∈ I , then their union is also a subset of X,

namely⋃i∈I Ui ⊆ X.
• De Morgan’s Law:

(A ∪ B)c = Ac ∩ Bc; (9)
(A ∩ B)c = Ac ∪ Bc . (10)
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Or write X ⧵ A for Ac if we were to make the ambient space explicit:

X ⧵ (A ∪ B) = (X ⧵ A) ∩ (X ⧵ B); (11)
X ⧵ (A ∩ B) = (X ⧵ A) ∪ (X ⧵ B). (12)

More generally, for an arbitrary collection of subsets {Ui}i∈I in X, we have

X ⧵

(

⋃

i∈I
Ui

)

=
⋂

i∈I

(

X ⧵ Ui
)

; (13)

X ⧵

(

⋂

i∈I
Ui

)

=
⋃

i∈I

(

X ⧵ Ui
)

. (14)

We will also use De Morgan’s law extensively.
• Lemma 2.1. C ⧵ (B ⧵ A) = (C ⧵ B) ∪ (C ∩ A). ✽

Proof. Just write out the definitions:

B ⧵ A = {x ∈ B and x ∉ A},
so

C ⧵ (B ⧵ A) = {x ∈ C ∶ x ∉ B or x ∈ A}
= {x ∈ C ∶ x ∉ B} ∪ {x ∈ C ∶ x ∈ A}
= (C ⧵ B) ∪ (C ∩ A).

◽

• Lemma 2.2. (B ⧵ A) ∩ C = (B ∩ C) ⧵ A = B ∩ (C ⧵ A). ✽

Proof.

(B ⧵ A) ∩ C = {x ∈ B and x ∉ A and x ∈ C}
= {x ∈ B and x ∈ C and x ∉ A}
= {x ∈ B ∩ C and x ∉ A}
= (B ∩ C) ⧵ A.

We can also write
(B ⧵ A) ∩ C = {x ∈ B and x ∉ A and x ∈ C}

= {x ∈ B and x ∈ C and x ∉ A}
= {x ∈ B and x ∈ C ⧵ A}
= B ∩ (C ⧵ A).

◽
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• Given two propositions p and q, p ⇒ q means “p implies q”, namely, p being true is sufficient for
q being true, or q being true is necessary for the truth of p (if q is not true, then p can not be true
either, since if it was, then we can deduce that q is true, a contradiction). Thus p being true is a
sufficient condition for q being true, and q being true is a necessary condition for p being true.

• p⇔ q means p being true is necessary and sufficient for q being true, namely, p holds if and only if
q holds.

• We use “p ∨ q” to denote “p or q”. p ∨ q is true if and only if at least one of them is true.
• We use “p ∧ q” to denote “p and q”. p ∧ q is true if and only if both of them is true.
• We use “¬p” to denote the negation of p. Recall from high school math that p ⇒ q if and only if
¬q ⇒ ¬p.

• De Morgan’s law: ¬(p ∨ q) = (¬p) ∧ (¬q) and ¬(p ∧ q) = (¬p) ∨ (¬q).
• Given two setsX and Y , a function fromX to Y associates each x ∈ X with an element f (x) ∈ Y .

For a subset U of Y , its preimage, or inverse image, is the set f−1(U ) = {x ∈ X ∶ f (x) ∈ U},
which is a subset of X. It is easy to see that for U, V ⊆ Y , we have

f−1(Y ⧵ A) = X ⧵ f−1(A);

f−1(U ∪ V ) = f−1(U ) ∪ f−1(V );

f−1(U ∩ V ) = f−1(U ) ∩ f−1(V ).

More generally,
f−1

(

⋃

�∈Λ
Vi

)

=
⋃

�∈Λ
f−1(V�); (15)

f−1
(

⋂

�∈Λ
Vi

)

=
⋂

�∈Λ
f−1(V ). (16)

• For more on set theory, see my notes here.

3 Upper and Lower Bounds

We have learned least upper bound, greatest lower bound, lim inf and lim sup. It’s important to re-
member and understand the definitions of them clearly.

DEFINITION 3.1 For A ⊂ ℝ, if there is a numberM such that a ≤ M for all a ∈ A, thenM is
called an upper bound for A. Similarly, if there is a number l such that l ≤ a for all a ∈ A, then
l is called an lower bound for A.
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DEFINITION 3.2 A least upper bound for A ⊂ ℝ is a number x such that
• x is an upper bound for A;
• If r < x, then r is not an upper bound for A.

We write x = supA.

Consider A = {q ∈ ℚ | q2 < 2} as a subset ofℚ. A does not have a least upper bound inℚ. Every
rational number in [√2,∞) is an upper bound for A, but no matter how close to √

2 our choice of
q ∈ ℚ ∩ [

√

2,∞) is, we can always find a rational number q′ such that √2 < q′ < q, who is even
closer to √2 and hence to A. Thus, the set A does not have a least upper bound in ℚ. √2 is a “gap”
that makes the rational number “incomplete”. To fill the gaps, one constructs real numbers ℝ from
rational numbers (via Dedekind cut), and our real numbers would be complete, in the sense that:

Theorem 3.3. Every subset of ℝ that is bounded above has a least upper bound. ♢

Placing our set A = {q ∈ ℚ | q2 < 2} in ℝ, we see that√2 is the least upper bound for A.
Now consider Definition 3.2. Note that given � > 0, since x − � < x, it is not an upper bound

for A, so that there exists some a ∈ A such that a > x − �. Otherwise, if no such a ∈ A exists, then
a ≤ x − � for all a ∈ A, so that x − � would be an upper bound for A, a contradiction. Thus we have

Proposition 3.4. x = supA if and only if a ≤ x for all a ∈ A, and for every � > 0, there is a ∈ A
such that a > x − �. ♦

DEFINITION 3.5 A greatest lower bound for A ⊂ ℝ is a number x such that
• x is a lower bound for A;
• If r > x, then r is not a lower bound for A.

We write x = inf A.

Proposition 3.6. x = inf A if and only if x ≤ a for all a ∈ A, and for every � > 0, there is a ∈ A
such that a < x + �. ♦

There are three equivalent definitions of lim sup and lim inf . Be sure to remember and understand
all of them.
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DEFINITION 3.7 For a sequence (an)n∈ℕ of real numbers, we write lim sup
n→∞

an = L if there is a
number L such that

• For any � > 0, there isN ∈ ℕ such that an < L + � for all n ≥ N ;
• For any � > 0 andN ∈ ℕ, there is n ≥ N such that an > L − �.
This means that all but finitely many an lie to the left of L + �, while infinitely many an lie

to the right of L − �. Also, the number L that satisfies the above conditions is unique.
For a sequence (an)n∈ℕ of real numbers, we write lim inf

n→∞
an = l if there is a number l such

that
• For any � > 0 andN ∈ ℕ, there is n ≥ N such that an < l + �;
• For any � > 0, there isN ∈ ℕ such that an > l − � for all n ≥ N .
This means that all but finitely many an lie to the right of l − �, while infinitely many an lie

to the left of l + �. The number l that satisfies the above conditions is unique.

DEFINITION 3.8 For a sequence (an)n∈ℕ of real numbers, let

E = {x | x = lim
k→∞

ank for some subsequence (ank) of (an)}.

E is the set of all subsequencial limits of (an). We define

lim sup
n→∞

an ∶= supE; lim inf
n→∞

an ∶= inf E.

DEFINITION 3.9 For a sequence (an)n∈ℕ of real numbers, we define

lim sup
n→∞

an ∶= lim
n→∞

(

sup
k≥n

ak

)

,

and similarly,

lim inf
n→∞

an ∶= lim
n→∞

(

inf
k≥n

ak

)

.

Sometimeswe omit “n→∞” in the bottom of lim sup and lim inf to simplify notations. (supk≥n ak)in Definition 3.9 is an abbreviation for sup{ak ∶ k ≥ n}, and (infk≥n ak) is an abbreviation for
inf{ak ∶ k ≥ n}. Note that un ∶= sup{ak ∶ k ≥ n} is a decreasing sequence, so limn→∞ un con-
verges in ℝ̄ = ℝ ∪ {∞,−∞}. Similarly, inf{ak ∶ k ≥ n} is an increasing sequence, so it converges
as well.

Proposition 3.10. Definition 3.7 and Definition 3.8 are equivalent. ♦

11



Proof. We prove the case for lim sup. The case for lim inf is similar. Let x = supE, where E is
as in Definition 3.8. We show x satisfies the two conditions in Definition 3.7. First, is an < x + �
eventually? This is true, for otherwise, we would have an ≥ x + � infinitely often, which implies that
ank ≥ x + � infinitely often for some subsequence (ank). But then x ≥ limk→∞ ank ≥ x + �, which is
not true. So x do satisfies the first condition.

Is an > x − � infinitely often? This can also be easily seen to be true: since x − � is not an upper
bound for E, there is � ∈ E such that � > x − �. Since � is a limit of some subsequence of (an), we
have that subsequence > x − � eventually, so our desired conclusion holds. ◽

Proposition 3.11. Definition 3.7 and Definition 3.9 are equivalent. ♦

Proof. We prove the case for limit superior. Let un = supk≥n ak, and let u = limn→∞ un. We show that
u satisfies the two conditions in Definition 3.7. Now, the limit means that

For every � > 0, there isN ∈ ℕ, such that |un − u| < � for all n ≥ N.

Thus given � > 0, there is N ∈ ℕ such that an ≤ un < u + � for all n ≥ N . This proves the first
condition.

On the other hand, invoking the definition of least upper bound, we see that there is an integer
m > n ≥ N , such that am > un − �. Since un > u − �, we have an > un − � > (u − �) − � = u − 2�.
This shows that u also satisfies the second condition of Definition 3.7. This proves the equivalence of
the two definitions. ◽

Proposition 3.12. Let lim sup an = L. Then there is a subsequence ank of (an) such that

lim
k→∞

ank = L. ♦

Proof. Resort to Definition 3.7, there exists an1 such that |an1 − L| < 1
2 . Similarly, there exists an2

such that |an2 −L| < 1
22 . Continuing this way, we have a subsequence (ank) such that |ank −L| < 1

2k .Then it is clear that limk→∞ ank = L. ◽

In the notation of Definition 3.8, the proposition above says that supE ∈ E.

4 Definition and Examples

DEFINITION 4.1 A topology on a set X is a collection  of subsets of X such that
a) ∅, X ∈  ;
b) arbitrary union of elements of  is in  ;
c) finite intersections of elements of  is in  .

Elements of  is called open sets. The pair (X,  ) is called a topological space.

12



4.1 Examples of Topological Spaces

• Let X = {a, b, c}. Then  = {∅, {a}, {a, b}, {a, b, c}} is a topology on X, as you can easily
verify.

• For a set X,  = {∅, X} is a topology on X, called the trivial topology on X.
• For a set X, the power set (X), the set that consists of all subsets of X, is a topology on X. It

is called the discrete topology on X.
• It is immediate that a metric space (X, d) is a topological space. The topology on X is the

collection of all open sets. Denote this topology by (d). On the other hand, given a topology
 on a set X, does there exist a metric d on X that generates the topology  ?

DEFINITION 4.2 A topological space (X,  ) is called metrizable if there exists some metric d
on X such that  = (d).
Metric space is something we are familiar with. Given a topological space, we may want to de-

termine whether it is metrizable, i.e., whether it is some metric space. So the question is, under what
conditions is a topological space metrizable? You can have this question as a motivation for studying
general topology. In particular, for every new concepts and definitions we are going to learn, think
about how they are abstracted from metric space, and conversely, whether those concepts are enough
to characterize certain or all metric spaces.

5 Basis

Sometimes we want to build a topology on a setX from something that is familar to us. Or conversely,
given a topology on X, which may be too large to describe, we may wish to describe it in terms of
something smaller. This leads to the concept of basis.

DEFINITION 5.1 Let X be a set. A basis  on X is a collection of subsets of X such that
a) For each x ∈ X, there is some B ∈  such that x ∈ B;
b) For each x ∈ B1∩B2, whereB1, B2 ∈ , there is someB3 ∈  such that x ∈ B3 ⊂ B1∩B2.

Recall the definition of open set in metric space: a set U is open if for every x ∈ U we can find
some open ball B such that x ∈ B ⊂ U . Given a basis  of X, we would like to model the situation
for metric space to generate a topology  on X from . So we have the following construction. We
let

 = { U ⊂ X | for every x ∈ U there is some B ∈  such that x ∈ B ⊂ U}.

Proposition 5.2.  is indeed a topology on X. ♦

Proof. We verify  satisfies the three conditions in Definition 4.1.

13



a) ∅, X ∈  .
b) {U�} ⊂  implies U =

⋃

U� ∈  . Indeed, let x ∈ U . Then x ∈ U� for some particular
U� ∈  . Then by definition there is some B ∈  such that x ∈ B ⊂ U�. Then x ∈ B ⊂ U , so
that U ∈  as well.

c) Let U1, U2 ∈  . We want U1 ∩ U2 ∈  . Let x ∈ U1 ∩ U2. Then since x ∈ U1 as well as
x ∈ U2, there are some B1 and B2 such that x ∈ B1 ⊂ U1 and x ∈ B2 ⊂ U2. Since  is a basis,
we have x ∈ B3 ⊂ B1 ∩ B2 ⊂ U1 ∩ U2 for some B3 ∈ . This shows that U1 ∩ U2 ∈  . The
case for finite intersection follows by induction. ◽

Compare the definition of basis with that of topology, we find that the former is easier. For exam-
ple, it is easy to see that the collection of open balls in a metric space (X, d) is a basis on X. Given
a basis on X, we can construct a topology on X and speak of “open sets”. The following proposition
further explains in what sense  would be a basis for a topology  .

Proposition 5.3. Let  be a basis for a topology  . Then every element in  is a union of elements
in . ♦

Proof. Recall in Problem Set 1, we have learned that in a metric space, an open set can be expressed
as a union of open balls. Namely, for U ⊂ X, we have

U =
⋃

x∈U
B(x, �x).

The situation here is just a model of this. Let U ∈  . Then for every x ∈ U there is some Bx ∈ 
such that x ∈ Bx ⊂ U . Then

U =
⋃

x∈U
Bx.

◽

Notation. We write  = �() if  is generated by the basis .

DEFINITION 5.4 Suppose  and  ′ are two topologies on X. If  ⊂  ′, then we say  ′ is
finer than  , and  is coarser than  ′.  ′ is strictly finer than  (or  is strictly coarser than
 ′) if the inclusion is proper. If neither topology includes the other, then we say they are not
comparable.
Basis makes it easier to compare topologies.

Lemma 5.5. Let  = �() and  ′ = �(′). The following are equivalent:

(1)  ⊂  ′;

(2) For every x ∈ X and every x ∈ B ∈ , there is B′ such that x ∈ B′ ⊂ B. ✽
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Proof. (2) ⇒ (1): Let U ∈  = �(). Then given x ∈ U , there is B ∈  such that x ∈ B ⊂ U . By
the assumption of (2), we have x ∈ B′ ⊂ B ⊂ U for some B′ ∈ ′. Then U ∈  ′ = �(′).

(1)⇒ (2): Note that, givenB ∈ , sinceB ∈  , we haveB ∈  ′. Then (2) holds by the definition
of  ′. ◽

Thus, to compare two topologies on a set X, we only need to compare their basis.

5.1 Examples

• We have mentioned that, for a metric space (X, d), the collection of open balls is a basis. Thus,
for example, the collection of open intervals (a, b) in ℝ is a basis for (ℝ, d), where d(x, y) =
|x − y|. Similarly, an element of a basis for (ℝ2, d2) is an open disk, where d2(x, y) = ((x1 −
y1)2 + (x2 − y2)2)1∕2 for x = (x1, x2), y = (y1, y2). Another metric on ℝ2 is d∞(x, y) =
max{|x1−y1|, |x2−y2|}. Although the twometrics are different (two points inℝ2 have different
"distances" under the two metrics), they generate the same topology on ℝ2.

Proposition 5.6. (d2) = (d∞). ♦

Proof. A drawing would be clear enough to illustrate Lemma 5.5.

◽

Similarly, all of the metrics dp for 1 ≤ p < ∞ generate the same topology on ℝn. Thus, we see
that topology concerns only open sets, and would forget the geometric property of “distance”.

• For (ℝn, dp), and its collection of its open balls,  = �() can be generated by a much smaller
basis: the collection of open balls with rational radius ℚ, which is countable. Every open ball
with real radius inscribes a smaller open ball with rational radius, as it can also be inscribed by
a larger one. This shows that a metric space can have a countable basis.

• Let’s consider a different basis on ℝ. We let ′ be the collection of all half-open intervals of
the form

[a, b) = {x ∶ a ≤ x < b}.

Is the topology generated by this ′ the same as the usual one?

Proposition 5.7.  ′ = �(′) is strictly finer than the usual topology on ℝ. ♦
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Proof. We still apply Lemma 5.5. For every x ∈ (a, b), x ∈ [x, b) ⊂ (a, b), and [x, b) ∈ ′. On
the other hand, given a basis element [y, d) in ′, there is no interval (a, b) around y such that
y ∈ (a, b) ⊂ [y, d). ◽

Notation. We denote (ℝ,  ′) by ℝl, and call  ′ the lower limit topology on ℝ.

6 Closed Sets, Limit Points, Convergence of Sequences, Hausdorff Spaces

Our definition of closed sets is the same as in the case for metric spaces.
DEFINITION 6.1 Let (X,  ) be a topological space. A ⊂ X is called closed if X ⧵ A ∈  .

Proposition 6.2. Let  denote the set of all closed set in (X,  ). Then

a) ∅, X ∈ ;

b) {A�}�∈Λ ⊂  ⇒
⋂

�∈Λ
A� ∈ ;

c) {A1, A2,… , An} ⊂  ⇒
n
⋃

i=1
Ai ∈ . ♦

Proof.

X ⧵
(

⋂

A�
)

=
⋃

(

X ⧵ A�
)

∈ 

and
X ⧵

( n
⋃

i=1
Ai

)

=
n
⋂

i=1

(

X ⧵ Ai
)

∈  .
◽

Exercise 6.3. If U ∈  , C ∈ , then U ⧵ C ∈  , and C ⧵ U ∈ . ◴

Proof. By Lemma 2.1, X ⧵ (U ⧵ C) = (X ⧵ U ) ∪ (X ∩ C) = (X ⧵ U ) ∪ C ∈ , and X ⧵ (C ⧵ U ) =
(X ⧵ C) ∪ (X ∩ U ) = (X ⧵ C) ∪ U ∈  . ◽

The interior and closure of a set are defined in the same way as for metric spaces.
DEFINITION 6.4 Let (X,  ) be a topological space and let A ⊂ X. Then

1. The interior of A is defined to be A◦ =⋃

{G ∶ G ⊂ A,G ∈  }.
2. The closure of A is defined to be Ā =⋂

{F ∶ A ⊂ F , F ∈ }.

The interior of A is the biggest open set contained in A, and the closure of A is the smallest closed
set containing A. A is open iff A = A◦, and A is closed iff A = Ā.
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Terminology. If a point x in X is in some open set U , then we call U a neighborhood of x.
The definition of limit point is a direct generalization from metric spaces.

DEFINITION 6.5 x is called a limit point of A if for every neighborhood U of x, there is some
y ∈ A ∩ U such that y ≠ x. We denote the set of all limit points of A by A′.
Some authors define the closure of a set A to be A ∪ A′. These two definitions are equivalent.

Proposition 6.6. Ā =
⋂

{F ∶ A ⊂ F , F ∈ } = A ∪ A′. ♦

Proof. We first prove x ∈ Ā if and only if for every neighborhood U of x, A ∩ U ≠ ∅. We prove the
contrapositive: x ∉ Ā if and only if there is some neighborhood U of x such that U ∩ A = ∅. Now

1. x ∉ Ā ⇐⇒ x ∈ X ⧵ Ā, so that if we let U = X ⧵ Ā, then U ∩ A = ∅.
2. x ∈ U, U ∩ A = ∅ ⇐⇒ A ⊂ X ⧵ U ⇐⇒ Ā ⊂ X ⧵ U ⇐⇒ x ∉ Ā.
Return to our proposition ,we first have Ā ⊂ A ∪ A′: let x ∈ Ā. If x ∈ A, we are done. If x ∉ A,

then for every neighborhood U of x, A ∩ U ≠ ∅. Any element in A ∩ U cannot be x, so x is a limit
point of A. Conversely, by what we have just proved, it is obvious that A ∪ A′ ⊂ Ā. ◽

Corollary 6.7. A is closed if and only if A′ ⊂ A. ♠

Some properties of closure:

Exercise 6.8. Let A, B, and {A�} be subsets of (X,  ). Prove the following:
(a) If A ⊂ B, then Ā ⊂ B̄.
(b) A ∪ B = Ā ∪ B̄.
(c) ⋃

Ā� ⊂
⋃

A
�
. ◴

Proof. (a) From our proof of Proposition 6.6, x ∈ Ā if and only if every neighborhood of x has
nonempty intersection with A. Since A ⊂ B, it is also true that every neighborhood of x has
nonempty intersection with B. Thus x ∈ B̄.

(b) First, sinceA ⊂ Ā andB ⊂ B̄, A∪B ⊂ Ā∪ B̄, which is closed. Since the closure ofA∪B is the
smallest closed set containing A ∪B, we have A ∪ B ⊂ Ā ∪ B̄. On the other hand, A ⊂ A ∪B,
so that Ā ⊂ A ∪ B by (a). Similarly, B̄ ⊂ A ∪ B. Thus Ā ∪ B̄ ⊂ A ∪ B.

(c) Since A� ⊂ ⋃

A� for each �, Ā� ⊂ ⋃

A� for each �, by (a). Then
⋃

Ā� ⊂
⋃

A�.
Although it is true that A� ⊂ Ā� for each � and thus ⋃A� ⊂

⋃

Ā�, ⋃ Ā� may not be closed,
since arbitrary union of close sets need not be closed. Thus the other inclusion does not hold.
An example would be An = Ān = {

1
n
}, n = 1, 2,…. In this case, ⋃ Ān = {1,

1
2 ,
1
3 ,… , 1

n
,…},

⋃

An = {1,
1
2
, 1
3
,… , 1

n
,…}, but⋃An = {0} ∪ {1,

1
2
, 1
3
,… , 1

n
,…}. ◽
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Exercise 6.9. Let A, B, and {A�} be subsets of (X,  ). Prove the following:
(a) A ∩ B ⊂ Ā ∩ B̄.
(b) ⋂

A� ⊂
⋂

Ā�.
(c) Ā ⧵ B̄ ⊂ A ⧵ B. ◴

Proof. (a) A∩B ⊂ A and A∩B ⊂ B, so by (a) A ∩ B ⊂ Ā and A ∩ B ⊂ B̄. Thus A ∩ B ⊂ Ā∩ B̄.
The other inclusion need not hold. For example, let A = (0, 1

2 ) and B = (12 , 1) be two open
intervals in ℝ. Then A ∩ B = ∅, so that A ∩ B = ∅̄ = ∅. On the other hand, Ā = [0, 1

2
] and

B̄ = [12 , 1] so that Ā ∩ B̄ = {12}.

(b) Since ⋂A� ⊂ A� for each �, ⋂A� ⊂ Ā� for each �, by (a). Then ⋂A� ⊂
⋂

Ā�. Again, the
inverse inclusion needs not hold.

(c) Since B ⊂ B̄, we have Ā ⧵ B̄ ⊂ Ā ⧵ B. Let x ∈ Ā ⧵ B̄, so that x ∈ Ā and x ∉ B. For every
neighborhood U of x, A ∩ U ≠ ∅. Now by Lemma 2.2,

(A ⧵ B) ∩ U = (A ∩ U ) ⧵ B.

We know A ∩ U ≠ ∅. But (A ∩ U ) ⧵ B ≠ ∅ either, since A ∩ U can not be a subset of B (we
have at least x ∉ B). This shows that x ∈ A ⧵ B by our proof of Proposition 6.6. ◽

DEFINITION 6.10 Let (X,  ) be a topological space. A sequence of point (xn) in X is said to
converge to x ∈ X if every neighborhood of x contains all but finitely many points of (xn).
If a topology has too few open sets, it may happen that a sequence may converge to more than one

point. In the extreme case of trivial topology, every sequence converges to every point in the space!
Thus, the coarser a topology is, the easier it is for a sequence to converge; the finer a topology is, the
more difficult it is for a sequence to converge.

DEFINITION 6.11 (X,  ) is called aHausdorff space if for every x ≠ y ∈ X, there areU, V ∈ 
such that x ∈ U , y ∈ V , and U ∩ V = ∅. Namely, in a Hausdorff space, every pair of distinct
points can be separated by open sets.

• Any metric space (X, d) is Hausdorff. Indeed, let x ≠ y ∈ X. Then d(x, y) > 0, so if we let
r = 1

3d(x, y), we then have B(x, r) ∩ B(y, r) = ∅.

Observation 6.12. Let  and  ′ be two topologies defined on X such that  ⊂  ′. If (X,  ) is
Hausdorff, then (X,  ′) is Hausdorff. ☉

Proposition 6.13. Let (X,  ) be a Hausdorff space. Then every sequence in X converges to at most
one point. ♦
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Proof. Suppose xn → x. Then for any y ≠ x, we can find some U, V ∈  such that x ∈ U , y ∈ V ,
and U ∩ V = ∅. xn ∈ U for all but finitely many n, so that V can not. ◽

Exercise 6.14. Show that X is Hausdorff if and only if the diagonal Δ = {(x, x) | x ∈ X} is closed
in X ×X. ◴

Proof. U ∩ V = ∅ if and only if (U × V ) ∩ Δ = ∅. ◽

Exercise 6.15. Every finite point set in a Hausdorff space is closed. ◴

Proof. It suffices to prove each one point set {x0} is closed. But X ⧵ {x0} is open, since for every
y ∈ X ⧵ {x0} we can find U, V ∈  such that y ∈ V ⊂ X ⧵ U ⊂ X ⧵ {x0}. ◽

DEFINITION 6.16 A topological space (X,  ) in which finite point sets are closed is called a T1
space.

Exercise 6.17. Let (X,  ) be a T1 space, and let x be a limit point ofA ⊂ X. Then every neighborhood
of x contains infinitely many points of A. ◴

Proof. Suppose for some x ∈ U ∈  , (U ⧵ {x}) ∩ A = {x1,… , xn} ∈ . By Exercise 6.3, U ⧵
{x1,… , xn} ∈  , and so it is a neighborhood of x not containing any point of A, a contradiction. ◽

Exercise 6.18. (X,  ) is a T1 space if and only if for every pair of points each has a neighborhood not
containing the other. ◴

Proof. "⇒": Let x ≠ y. Then X ⧵ {x} is the open neighborhood of y not containing x, and X ⧵ {y}
is the open neighborhood of x not containing y.

"⇐": Given x0 ∈ X, we prove X ⧵ {x0} is open. Let y ∈ X ⧵ {x0}. Then by assumption there is
y ∈ V such that V ∩ {x0} = ∅. Then y ∈ V ⊂ X ⧵ {x0}. ◽

7 Continuous Functions, Subbasis, Subspace Topology, Product Topol-
ogy

DEFINITION 7.1 Let (X, X) and (Y , Y ) be two topological spaces. A function f ∶ X → Y is
said to be continuous if f−1(V ) ∈ X for every V ∈ Y .
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DEFINITION 7.2 Let (X, X) and (Y , Y ) be two topological spaces. If there is a bijective func-
tion f ∶ X → Y such that
(1) f−1(V ) ∈ X for every V ∈ Y ,
(2) f (U ) ∈ Y for every U ∈ X ,

then X and Y are called homeomorphic. f is called a homeomorphism between X and Y .

Exercise 7.3. If f ∶ X → Y is continuous, then for each xn → x in X, f (xn)→ f (x) in Y . ◴

Proof. Let f (x) ∈ V , where V is open. Then x ∈ f−1(V ), which is also open. Thus xn ∈ f−1(V )
for all but finitely many n. Then f (xn) ∈ V for all but finitely many n. This proves limn→∞ f (xn) =
f (x). ◽

Warning: it is not true that for a continuous function, f (xn) → f (x) ⇒ xn → x. Example: f ∶ ℝ →
ℝ, f (x) = 1 for all x ∈ ℝ, and xn = (−1)n. f (xn) → f (x) = 1 for any x ∈ ℝ, but that doesn’t mean
xn → x.

Exercise 7.4. f ∶ X → Y is continuous if and only if for each x ∈ X and each neighborhood V of
f (x), there is a neighborhood U of x such that f (U ) ⊂ V . ◴

Proof. "⇒": f (

f−1(V )
)

⊂ V .
"⇐": Given V open in Y , to prove f−1(V ) is open in X, let x ∈ f−1(V ). Then f (x) ∈ V , so that

there is some neighborhood U of x such that f (U ) ⊂ V . Then x ∈ U ⊂ f−1 (f (U )) ⊂ f−1(V ). ◽

Exercise 7.5. f ∶ X → Y is continuous if and only if f−1(B) is closed in X for every closed set B
in Y . ◴

Proof. f−1(Y ⧵ V ) = X ⧵ f−1(V ). ◽

Exercise 7.6. f ∶ X → Y is continuous if and only if for every subset A of X, we have
f (Ā) ⊂ f (A). ◴

Proof. "⇒": A ⊂ f−1(f (A)) ⊂ f−1(f (A)). By continuity, f−1(f (A)) is closed in X, so that Ā ⊂
f−1(f (A)). Then f (Ā) ⊂ f (f−1(f (A)) ⊂ f (A).

"⇐": LetB be closed in Y , we prove f−1(B) is closed inX. By assumption, for the subset f−1(B)
of X, we have f (f−1(B)) ⊂ f (f−1(B)) ⊂ B̄ = B, so that f−1(B) ⊂ f−1(f (f−1(B))) ⊂ f−1(B).
Therefore, f−1(B) is closed. ◽

Exercise 7.7. If f ∶ X → Y and g ∶ Y → Z are continuous, then there composite g◦f ∶ X → Z is
continuous. ◴
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Proof. Given U open in Z, g−1(U ) is open in Y , and f−1(g−1(U )) is open in X. But f−1(g−1(U )) =
(g◦f )−1(U ). ◽

7.1 Subbasis

Sometimes, we wish to form a topology on a set X from something even smaller than a basis.
DEFINITION 7.8 (SUBBASIS) LetX be a set. Let  = {S�} be a collection of subsets ofX such
that

X =
⋃

S�.

Using  , we can generate a topology on X as follows. First, collect all finite intersections of
elements of  , and note that the collection forms a basis. A topology  can be then generated
from this basis. We call  a subbasis of  , and we write  = �().
For every x ∈ U ∈  , we have x ∈ (

S1 ∩⋯ ∩ Sn
)

⊂ U for some S1,… , Sn ∈  .

Exercise 7.9. Let f ∶ (X, X) ←→ (Y , Y ), where Y = �() is generated by subbasis  . Then f is
continuous if and only if f−1(S) ∈ X for every S ∈  . ◴

Proof. We prove f is continuous. Let V ∈ Y . By Proposition 5.3, V =
⋃

B� for some basis
elements {B�}. Then

f−1(V ) = f−1
(

⋃

B�
)

=
⋃

f−1(B�),

so that f−1(V ) is open if every f−1(B�) is open.
Now, for each B�, B� = S1 ∩⋯ ∩ Sn for some S1,… , Sn ∈  . Then

f−1(B�) = f−1
( n
⋂

i=1
Si

)

=
n
⋂

i=1
f−1(Si),

which is open since each f−1(Si) is assumed to be open. ◽

DEFINITION 7.10 (WEAK TOPOLOGY) Let {(Y , �)}�∈Λ be a family of topological spaces, with
functions f� ∶ X → Y�. Let

� = {f−1� (V ) | V ∈ �}.

Then  = {�}�∈Λ is a subbasis for X. The topology generated by this subbasis,  = �(), is
called the weak topology on X with respect to {f�}�∈Λ. It is the coarsest topology on X such
that each f� is continuous.
• Let X be a set, (Y , Y ) be some topological space, and let f ∶ X → Y be a constant function,

i.e., f (x) = c ∈ Y for all x ∈ X. Then for any U ∈ Y ,

f−1(U ) =

{

∅ if c ∉ U ;
X if c ∈ U.

Thus any constant function on X generates the trivial topology {∅, X} on X.
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• Let f ∶ X → Y has only two distinct values {c1, c2} in Y . Then for any U ∈ Y ,

f−1(U ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f−1(c1) if c1 ∈ U, c2 ∉ U ;
f−1(c2) if c2 ∈ U, c1 ∉ U ;
∅ if c1, c2 ∉ U ;
X if c1, c2 ∈ U.

Note that the two sets f−1(c1) and f−1(c2) are disjoint in X. Let A = f−1(c1), then f−1(c2) =
X ⧵ A. The weak topology generated by the function f is then {∅, X, A,X ⧵ A}. It is the
coarsest topology with respect to which f is continuous. The function f divides X into two
disjoint "components".

• Similarly, for f ∶ X → Y that takes three distinct values {c1, c2, c3} in Y , the coarsest topology
with respect to which f is continuous is {∅, X, A1, X ⧵ A1, A2, X ⧵ A2, A3, X ⧵ A3}, where
Ai = f−1(ci) for i = 1, 2, 3. Similar construction can be made for any function that has n distinct
values on X. Note that start from n = 4, it is not enough to only include Ai and X ⧵Ai into the
topology; for example, for n = 4, A1 ∪ A2 = (X ⧵ A3) ∩ (X ⧵ A4) = X ⧵ (A3 ∪ A4).

• Equivalently, what we are doing above can also be seen as partitioning X into disjoint sets
A1, A2,… , An, and we seek the coarsest topology on X relative to which each Ai is open.

DEFINITION 7.11 (SUBSPACE TOPOLOGY) Let (X,  ) be a topological space, and let S ⊂ X.
� ∶ S → X

is the inclusion map defined by �(x) = x ∈ X for x ∈ S. The subspace topology S on S is
defined to be the weak topology on S with respect to �.
From the fact that �−1(U ) = S ∩ U , Eq. (15) and Eq. (16), we see

S = {S ∩ U ∶ U ∈  }.

The subspace topology is the coarsest topology on S for which � is continuous. If we endow S with
some different topologies, then the seemingly trivial map � may fail to be continuous. For example, if
we endow S with the trivial topology {∅, S}, then � may not be continuous.

Observation 7.12. Note that intersection communicates with Cartesian product, namely,
⋂

�

(

∏

�
V �
�

)

=
∏

�

(

⋂

�
V �
�

)

.

Thus,for example,
(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2) × (V1 ∩ V2).

Let {Xi}∞i=1 be a sequence of sets. If U1 ⊂ X1, U2 ⊂ X2, then
(

U1 ×X2 ×X3 ×⋯
)

∩
(

X1 × U2 ×X3 ×⋯
)

= U1 × U2 ×X3 ×⋯ . ☉
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DEFINITION 7.13 (PRODUCT TOPOLOGY) Let {(X� �)}�∈Λ be a family of topological spaces.
The projection with index �0, p�0 , is the function

p�0 ∶
∏

�∈Λ
X� ←→ X�0

that maps an element of ∏X� to its �0 component in X�0 . The product topology on
∏

X� is
defined to be the weak topology on∏X� with respect to {p�}�∈Λ. It is the coarsest topology in
which each projection is continuous.
We illustrate the definition using a sequence of topological spaces {(Xi, i)}∞i=1. Let  be the

product topology on∏∞
i=1Xi. To make each pi continuous, we first put {p−1i (U ), U ∈ i} for all i into

 . For example, forU1 ∈ 1, p−11 (U1) = U1×X2×X3×⋯; forU2 ∈ 2, p−12 (U2) = X1×U2×X3×⋯.
Then we form the finite intersection of them to obtain our basis for  . For example, according to our
observation,

p−11 (U1) ∩ p
−1
2 (U2) ∩⋯ ∩ p−1n (Un) = U1 × U2 ×⋯ × Un ×Xn+1 ×Xn+2 ×⋯ .

Thus, for every U ∈  , and every x ∈ U , there is a basis element∏∞
i=1 Ui such that

x ∈
∞
∏

i=1
Ui ⊂ U,

where Ui ≠ Xi for all but finitely many i.

Exercise 7.14. Let A� ⊂ X� for each � ∈ Λ. Then
∏

Ā� =
∏

A�. ◴

Proof. Since
(

∏

U�
)

∩
(

∏

A�
)

=
∏

(U� ∩ A�),
(
∏

U�
)

∩
(
∏

A�
)

≠ ∅ if and only if U� ∩ A� ≠ ∅ for each � ∈ Λ. ◽

Exercise 7.15. If each X� is a Hausdorff space, then∏�∈ΛX� is Hausdorff. ◴

Proof. Let f ≠ g ∈
∏

�∈ΛX�. Then f (�0) ≠ g(�0) for some �0. Since X�0 is Hausdorff, there issome open sets U, V in X�0 such that f (�0) ∈ U, g(�0) ∈ V , and U ∩ V = ∅. Then f ∈
∏

U�,
where U� = X� if � ≠ �0; g ∈∏

V�, where V� = X� if � ≠ �0, and
(

∏

U�
)

∩
(

∏

V�
)

= ∅.

To see this, if ℎ ∈ (
∏

U�
)

∩
(
∏

V�
)

=
∏

(

U� ∩ V�
), then ℎ(�0) ∈ ∅, which is absurd. ◽

Theorem 7.16. Let (fn) be a sequence in
∏

�∈ΛX�, where fn =
(

fn(�)
)

�∈Λ, and let f = (f (�))�∈Λ
be a point in this product space. Then fn → f if and only if fn(�)→ f (�) in X� for each �. ♢
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Proof. First let fn → f in ∏

X�. Then every neighborhood of f contains all but finitely many
fn. Given any �0, and any neighborhood U�0 of f (�0),

∏

U�, where U� = X� for � ≠ �0, is a
neighborhood of f , so that fn ∈ ∏

U� for all but finitely many n. Then fn(�0) ∈ U�0 for all butfinitely many n. This proves fn(�0)→ f (�0).
Now suppose fn(�) → f (�) in X� for each �. Does fn converge to f? For each neighborhood

U of f , there is a basis element B such that f ∈ B ⊂ U . Without loss of generality, and for the
purpose of demonstration, we assume B = U�1 ×⋯ × U�N ×

∏

�≠�1,…,�N
X�. Then f (�1) ∈ U�1 ,

f (�2) ∈ U�2 ,…… , and f (�N ) ∈ U�N . Since fn(�) → f (�) in X� for each �, we have fn(�1) ∈ U�1for all but finitelymany n,…… , fn(�N ) ∈ U�N for all but finitelymany n. Then fn =
(

fn(�)
)

�∈Λ ∈ Bfor all but finitely many n. This proves fn → f . ◽

We mention that there is a second proof for the “only if " part. Since each projection p� is contin-
uous, we have by Exercise 7.3

lim
n→∞

fn(�) = lim
n→∞

p�(fn) = p�
(

lim
n→∞

fn
)

= p�(f ) = f (�) (17)

for each � ∈ Λ.
• Let ℝ[a,b] denote the set of all real-valued functions defined on the interval [a, b]. Endow ℝ[a,b]

with the product topology. Then (fn) converges pointwise to f if and only if fn → f in ℝ[a,b].

Theorem 7.17. Let f ∶ (Y ,  ) →
∏

�∈ΛX� be given by f (y) =
(

f�(y)
)

�∈Λ, where f� ∶ Y → X� is
the �’s component of f . Then f is continuous if and only if each f� is continuous. ♢

Proof. Note that
f� = p�◦f,

so that if f is continuous, then each f� is continuous, by Exercise 7.7. Conversely, suppose each f�
is continuous. To prove f is continuous, we only need to verify that f−1 (p−1� (U )

)

∈  for all � and
all U open in X�, by Exercise 7.9. But

f−1
(

p−1� (U )
)

= (p�◦f )−1(U ) = f−1� (U ) ∈  . ◽

Next we introduce the box topology, which is in some sense "dual" to the product topology.
DEFINITION 7.18 (BOX TOPOLOGY) Let {(X� �)}�∈Λ be a family of topological spaces.

 =

{

∏

�∈Λ
U� | U� ∈ �

}

is a basis on∏X�.  = �() is called the box topology on∏X�.

Theorem 7.19. Let {(X� �)}�∈Λ be a family of T1 spaces, and let  be the box topology on
∏

X�.
Suppose (fn) is a sequence in

∏

X� and f ∈
∏

X�. Then fn → f in (
∏

X�,  ) if and only if

1. fn(�)→ f (�) in X� for each �;

24



2. ∃Λ0 finite, fn = f on Λ ⧵ Λ0 eventually. ♢

Proof. "⇐": Let U be a neighborhood of f . Then there exists a basis element ∏U� such that f ∈
∏

U� ⊂ U , where each U� is an open set in X�. For all those � ∈ Λ ⧵ Λ0, there is someN ∈ ℕ such
that fn(�) = f (�) ∈ U� for all n ≥ N . Now suppose Λ0 has k elements. Then since fn(�) → f (�)
for each � ∈ Λ0,

�1 ∈ Λ0 ⇒ ∃N1 ∈ ℕ, fn(�1) ∈ U�1 ∀n ≥ N1;

�2 ∈ Λ0 ⇒ ∃N2 ∈ ℕ, fn(�2) ∈ U�2 ∀n ≥ N2;

⋮

�k ∈ Λ0 ⇒ ∃Nk ∈ ℕ, fn(�k) ∈ U�k ∀n ≥ Nk.

LetN ′ = max{N,N1,… , Nk}. Then fn ∈∏

U� for all n ≥ N ′. This proves fn → f .

"⇒": Box topology is finer than the product topology, so that in particular, each projection p� is
continuous. Thus fn → f implies fn(�) = p�(fn)→ p�(f ) = f (�), as in Eq. (17).

Now, is it necessary that ∃Λ0 finite, fn = f on Λ ⧵ Λ0 eventually? Suppose, to the contrary, that

∀Λ0 finite, fn ≠ f on Λ ⧵ Λ0 infinitely often.
Pick n1 ∈ ℕ and �1 ∈ Λ such that fn1(�1) ≠ f (�1). Then there is a neighborhood V�1 of f (�1)in X�1 such that fn1(�1) ∉ V�1 . Similarly, pick n2 ∈ ℕ and �2 ∈ Λ such that fn2(�2) ≠ f (�2). Then

there is a neighborhood V�2 of f (�2) in X�2 such that fn2(�2) ∉ V�2 . Continuing this way, we obtain
a sequence of open sets {V�1 , V�2 ,…}. Let V =

∏

V�, where we let V� be an arbitrary neighborhood
of f (�) if � ∉ {�1, �2,…}. Then fn ∉ V for infinitely many n ∈ ℕ, contrary to the assumption that
fn → f . ◽

8 Connectedness

DEFINITION 8.1 Let (X,  ) be a topological space. It is called disconnected if there is a subset
A ∉ {∅, X} such that both A,X ⧵ A ∈  . It is called connected if it is not disconnected.
Thus if X is disconnected, it can be written as a disjoint union of two open subsets.
Let

 = {A ⊂ X | X ⧵ A ∈  }

be the collection of all closed subsets in X. Since X ⧵A ∈  if and only if A ∈ , and A ∈  if and
only if X ⧵ A ∈ , we have both A,X ⧵ A ∈  if and only if both A,X ⧵ A ∈ .

Corollary 8.2. Let  denote the collection of closed subsets of (X,  ). X is disconnected if and only
if  ∩  ≠ {∅, X}. ♠
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Table 1: Duality of Box Topology and Product Topology

Basis for product topology:  =

{

∏

�∈Λ
U� | U� ∈ � ∀� ∈ Λ; ∃Λ0 finite, U� = X� on Λ ⧵ Λ0

}

Convergence in box topology: fn → f iff fn(�)→ f (�) ∀� ∈ Λ; ∃Λ0 finite, fn = f on Λ ⧵ Λ0

Basis for box topology:  =

{

∏

�∈Λ
U� ∶ U� ∈ � ∀� ∈ Λ

}

Convergence in product topology: fn → f iff fn(�)→ f (�) ∀� ∈ Λ

Corollary 8.3. X is disconnected if and only if there exists subset A ∉ {∅, X} such that

Ā ∩ (X ⧵ A) = ∅ and A ∩X ⧵ A = ∅. ♠

Proof. If X is disconnected, then both A,X ⧵ A ∈  ∩  so that the desired condition holds since
both sets are closed. Conversely, from Ā ∩ (X ⧵ A) = ∅ we have Ā ⊂ A so that A ∈ , and from
A ∩X ⧵ A = ∅ we have X ⧵ A ⊂ X ⧵ A, so that X ⧵ A ∈  as well. ◽

Theorem 8.4. Let f ∶ (X, X) → (Y , Y ) be a continuous function that is surjective. If Y is discon-
nected, then X is disconnected. ♢

Proof. By continuity, if both A, Y ⧵A ∈ Y , then both f−1(A) and f−1(Y ⧵A) = X ⧵f−1(A) ∈ X .◽

Corollary 8.5. Let f ∶ (X, X)→ (Y , Y ) be a continuous function. If X is connected, then f (X) is
connected in Y .

Proof. This is just the contrapositive of Theorem 8.4. ◽

Corollary 8.6. (X,  ) is connected if and only if every continuous function f ∶ X → {0, 1} is
constant, where {0, 1} has the discrete topology. ♠

Proof. {0, 1} with the discrete topology is not connected, so that if X is connected, f cannot be
surjective. Conversely, if bothA andX ⧵A ∈  for some nontrivialA ⊊ X, then the function defined
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by
f (x) =

{

1 if x ∈ A;
0 if x ∈ X ⧵ A.

is continuous and not constant. ◽

Corollary 8.7. Let {A�} be a collection of connected subspaces of X and assume
⋂

A� ≠ ∅. Then
⋃

A� is connected. ♠

Proof. Let p ∈ ⋂

A�, and let f ∶
⋃

A� → {0, 1} be continuous. Then since each ��∶ A� → X is
continuous, each f◦�� ∶ A� → {0, 1} is also continuous, thus constant, so that f◦��(x) = f◦��(p) =
constant for all � and all x ∈ ⋃

A�. Thus f is constant on⋃A�, which proves⋃A� is connected.◽

Corollary 8.8. If A is connected in X, then Ā is also connected in X. ♠

Proof. Let f ∶ Ā → {0, 1} be continuous. Then by Exercise 7.6, f (Ā) ⊂ f (A). Since f◦�A ∶ A →

{0, 1} is continuous, f (A) is a singleton. Then f (A) is also the same singleton, which implies that
f (Ā) is a singleton. This proves every continuous f ∶ Ā→ {0, 1} is constant. Hence Ā is connected.◽

Proposition 8.9. If X and Y are connected, then X × Y is connected. ♦

Proof. Fix a point (a, b) in X × Y . Then
X × Y =

⋃

x∈X
({x} × Y ) ∪ (X × {b}).

Each ({x} × Y ) ∪ (X × {b}) is connected, since the two connected spaces have (x, b) in common.
Also, all of them contain (a, b), so that their union is connected by Corollary 8.7. ◽

From Proposition 8.9, a finite product of connected spaces is connected, by induction.

Proposition 8.10. Let {X�}�∈Λ be a family of connected spaces. Then X =
∏

X� is connected in
the product topology. ♦

Proof. Fix a point f in∏X�. For any Λ0 ⊂ Λ finite, let
XΛ0 = {g ∈

∏

X� | g(�) = f (�) for � ∉ Λ0}.
EachXΛ0 is homeomorphic to a Cartesian product of finite connected spaces, hence connected. Since
they all have the point f in common, there union

⋃

Λ0⊂Λfinite

XΛ0

is connected. Now I claim
∏

X� =
⋃

Λ0⊂Λfinite

XΛ0 ,
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so that connectedness of ∏X� follows from Corollary 8.8. Let ℎ ∈∏

X� be an arbitrary point, and
let U be a neighborhood of ℎ. Then there is a basis element∏U� such that ℎ ∈∏

U� ⊂ U . Further,
there exists some finite Λ0 in Λ such that U� = X� for all � ∈ Λ ⧵ Λ0. Then the point ℎ′, where

ℎ′(�) =

{

ℎ(�) � ∈ Λ0
f (�) � ∈ Λ ⧵ Λ0

is inXΛ0 . This proves every neighborhood of ℎ has a nonempty intersection with⋃Λ0⊂Λ finiteXΛ0 , sothat its closure is indeed∏X� by Proposition 6.6. ◽

Theorem 8.11. A real interval [a, b] is connected. The real line ℝ is thus connected. By Proposi-
tion 8.10, ℝn is connected for any n ∈ ℕ. ♢

Proof. Suppose [a, b] = A ∪ B, where A and B are open and disjoint. Let x = supA. Then is x ∈ A
or x ∈ B? If x ∈ A, then there is some basis element (u, v) such that x ∈ (u, v) ⊂ A. Then since
x < v, x is not an upper bound of A, a contradiction. If x ∈ B, then there is some basis element
(u′, v′) such that x ∈ (u′, v′) ⊂ B. Note since B ∩ A = ∅, we have (u′, v′) ∩ A = ∅. Then u′ would
be an upper bound of A smaller than x, contradict to x being the least upper bound. ◽

On the other hand, ℚ is not connected. The set U = {x ∈ ℚ | x <
√

2} is open in ℚ, while its
complement ℚ ⧵ U = {x ∈ ℚ | x >

√

2} is also open in ℚ.

Theorem 8.12 (Intermediate Value Theorem). Let (X,  ) be a connected space, and let f ∶ X →
ℝ be continuous. Suppose f (x1) ≠ f (x2) for some x1, x2 ∈ X, and with loss of generality suppose
f (x1) < f (x2). Then for every r ∈ [f (x1), f (x2)] ⊂ ℝ, there is some x ∈ X such that r = f (x). ♢

Proof. Suppose no such x exists. Then for the open setU = f−1((−∞, r)) inX, its complement would
be X ⧵ U = f−1((r,+∞)), which is also open in X. This contradicts the fact that X is connected. ◽

Theorem 8.13 (Brouwer’s Fixed-Point Theorem, One Dimension). Every continuous f ∶ [0, 1] →
[0, 1] admits a fixed point, i.e., a point x ∈ [0, 1] such that f (x) = x. ♢

Proof. Since the range of f is [0, 1], we have f (0) ≥ 0 and f (1) ≤ 1. If f (0) = 0 or f (1) = 1, we are
done. Otherwise, f (0) − 0 > 0 and f (1) − 1 < 0, so that applying the Intermediate Value Theorem to
the continuous function f (x) − x, we conclude that there is x ∈ [0, 1] such that f (x) − x = 0. ◽

8.1 Path Connectedness

DEFINITION 8.14 Let (X,  ) be a topological space. Given two points x, y ∈ X, A path from
x to y is a continuous map f ∶ [0, 1] → X such that f (0) = x and f (1) = y. X is called
path-connected if there is a path between every pair of points in X.

Proposition 8.15. If (X,  ) is path-connected, then X is connected. ♦
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x

sin(1∕x)

Figure 1: Topologist’s sine curve

Proof. Suppose there is A ∈  such that X ⧵ A ∈  . Pick x ∈ A and y ∈ X ⧵ A. Let  = f ([0, 1])
be the image in X of a path from x to y. Then U =  ∩ A and  ⧵ U =  ∩ (X ⧵ A) would be both
in  , the subspace topology for  . But  is connected by Theorem 8.11 and Corollary 8.5. ◽

Example 8.16 (Topologist’s Sine Curve). Consider f ∶ (0, 1] → ℝ2 given by f (x) = (x, sin(1∕x)).
Its image is

S = {(x, sin(1∕x)) | x ∈ (0, 1]}.

Since (0, 1] is connected, and f is continuous on (0, 1], S is connected in ℝ2 by Corollary 8.5. Its
closure

S̄ = {(x, sin(1∕x)) | x ∈ (0, 1]} ∪ ({0} × [−1, 1])

is thus also connected, by Corollary 8.8. S̄ is called the (closed) topologist’s sine curve (Fig. 1). ◃

Proposition 8.17. S̄ is not path-connected. ♦

Proof. This is essentially the fact that the function

f (x) =

{

sin(1∕x) x ∈ (0, 1]
0 x = 0

defined on [0, 1] is not continuous. This is because we can find a sequence (xn) in [0, 1] such that
xn → 0 but f (xn) does not converge. To construct a specific example, let

xn =
1

(2n+1)�
2
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so that
f (xn) = sin

(2n + 1)�
2

=

{

1 n even;
−1 n odd.

Any other function f ∶ [0, 1] → S̄ such that f (1) ∈ S would fail to be continuous for similar
reasons, so that there does not exist a path from (0, 0) to a point in S. S̄ is thus not path-connected.◽

DEFINITION 8.18 (PATH COMPONENTS) Let (X,  ) be a topological space. Define an equiva-
lent relation by setting x ∼ y if there is a path from x to y. The equivalent classes are called the
path components of X.

• There are two path components of the topologist’s sine curve S̄. One is S, and the other is
{0} × [−1, 1]. Note that S is open but not closed, while {0} × [−1, 1] is closed but not open.

DEFINITION 8.19 (COMPONENTS) Let (X,  ) be a topological space. Define an equivalent re-
lation by setting x ∼ y if there is a connected subspace of X containing both x and y. The
equivalent classes are called the (connected) components of X.

Proposition 8.20. Each component in X is closed. ♦

Proof. Let A ⊂ X be an arbitrary connected subspace. Then x ∼ y for any x, y ∈ A, so that A falls
in a single component. Thus, components are maximal connected subspaces in X. Since the closure
of a connected subspace is connected by Corollary 8.8, each component is closed. ◽

• If X has only finitely many components, then each of them is also open in X. For example, let
X = C1 ∪ C2 ∪⋯ ∪ Cn. C2 ∪⋯ ∪ Cn is closed, being a finite union of closed subsets. Hence
C1 = X ⧵ (C2 ∪⋯∪Cn) is open. On the other hand, ifX has infinitely many components, then
they may not be open. For example, the components ofℚ are one-point sets {q}, and each such
singleton is not open.

DEFINITION 8.21 (QUASICOMPONENTS) Let (X,  ) be a topological space. Define an equiva-
lent relation by setting x ∼ y if there is no x ∈ A ∈  such that y ∈ X ⧵A ∈  . The equivalent
classes are called the quasicomponents of X.

Proposition 8.22. Each quasicomponent in X is closed. ♦

Proof. Let x ∈ X and let [x] denote the quasicomponent that contains x. Then it is easy to see that
[x] = {y ∈ X | no x ∈ A ∈  ∩  such that y ∉ A}.

Thus, y ∈ [x] if and only if y ∈ A for all A ∈  ∩  . Thus

[x] =
⋂

x∈A
A∈∩

A. (18)

Each such A is closed, so that their intersection is closed. ◽
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Observation 8.23. Let x ∈ X, and let [x], [x] and [x] denote the path component, component,
and quasicomponent that contain x, respectively. Then

[x] ⊂ [x] ⊂ [x]. ☉

8.2 Local Connectedness

DEFINITION 8.24 (X,  ) is locally connected at x if every neighborhood of x contains a con-
nected neighborhood. X is called locally connected if it is locally connected at each of its points.

8.2.1 Examples

• It is immediate that, if  = �(), where each B ∈  is connected, then (X,  ) is locally
connected.

• A = [1, 2] ∪ [3, 4] is locally connected, but not connected.
• The topologist’s sine curve is connected, but not locally connected. No connected neighborhood

is contained in any neighborhood of (0, 0).
• ℚ is neither connected nor locally connected.

DEFINITION 8.25 X is locally path connected at x if every neighborhood of x contains a path
connected neighborhood. X is called locally path connected if it is locally path connected at
each of its points.

• A = [1, 2] ∪ [3, 4] is locally path connected, but not path connected.
• Consider this infinite broom. It is path connected, but not locally path connected. Every neigh-

borhood of p would enclose infinitely many disjoint "branches".

p

Proposition 8.26. (X,  ) is locally connected if and only if for every U ∈  , every component [x]
in U is in  . In particular, if X is locally connected, then each component of X is open. ♦
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Proof. It is clear that if for every U ∈  and [x] ⊂ U , [x] ∈  for every x ∈ U , then X is locally
connected. Every x ∈ U ∈  contains a connected neighborhood (which is [x]).

Conversely, suppose (X,  ) is locally connected. Let U ∈  , and let [x] ⊂ U be a component of
U . If y ∈ [x], then there exists V ∈  such that y ∈ V ⊂ U and V is connected. Since V ∩[x] ≠ ∅,
we have V ⊂ [x]. This proves [x] is open. ◽

Proposition 8.27. (X,  ) is locally path connected if and only if for every U ∈  , every path com-
ponent [x] in U is in  . In particular, if X is locally path connected, then each path component of
X is open. ♦

Proof. Similar to the proof of Proposition 8.26. ◽

Proposition 8.28. If X is locally connected, then [x] = [x] for every x ∈ X. ♦

Proof. By Observation 8.23, [x] ⊂ [x]. We prove [x] ⊂ [x]. By Proposition 8.26, [x] ∈  for
every x ∈ X. [x] is also in  by Proposition 8.20, so that [x] ∈  ∩  . Then referring to Eq. (18),
we see that

[x] =
⋂

x∈A
A∈∩

A ⊂ [x].

◽

Proposition 8.29. If X is locally path connected, then [x] = [x] for every x ∈ X. ♦

Proof. By Observation 8.23, [x] ⊂ [x]. Suppose [x] ⊊ [x]. We let  be the collection of other
path components in X that have nonempty intersection with [x], i.e.,

 =
{

[y] | [y] ≠ [x], [y] ∩ [x] ≠ ∅
}

.

Since each [y] ∈  is connected, [y] ⊂ [x]. Thus,

[x] = [x] ∪
⎛

⎜

⎜

⎝

⋃

[y]∈
[y]

⎞

⎟

⎟

⎠

,

where ⋃[y]∈ [y] = [x] ⧵ [x] is open since each [y] is open by Proposition 8.27. We arrived at
a contradiction that [x] is disconnected. ◽

Corollary 8.30. If X is locally path connected, then [x] = [x] = [x] for every x ∈ X. ♠

9 Compactness

We generalize the notion of compactness in metric spaces to general topological spaces.
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DEFINITION 9.1 Let (X,  ) be a topological space. A subset A of X is said to be compact if
every open cover of A has a finite subcover. Namely, for any collection {U�}�∈Λ ⊂  such that
A ⊂

⋃

�∈Λ U�, there exists Λ0 ⊂ Λ finite such that

A ⊂
⋃

�∈Λ0

U� ⊂
⋃

�∈Λ
U�.

Observation 9.2. If  = �(B), then to check X is compact, we may only need to check every open
cover by elements in  has a finite subcover. ☉

Theorem 9.3. The real interval [a, b] is compact in (ℝ,  ), where  is the usual topology. ♢

Proof. Let {U�}�∈Λ ⊂  such that [a, b] ⊂ ⋃

�∈Λ U�, and let
A = {x ∈ [a, b] | [a, x] ⊂

⋃

�∈Λ0

U� for some Λ0 ⊂ Λ finite }.

Let x0 = supA. Is x0 = b? Suppose x0 < b.
Then since x0 ∈ U�′ for some U�′ ∈  , there is a basis element (x0 − �, x0 + �) such that

x0 ∈ (x0 − �, x0 + �) ⊂ U�′ . Since x0 − � is not an upper bound for A, there is some z ∈ A such that
x0 − � < z ≤ x0, so that [a, z] ⊂ ⋃

�∈Λ0
U� for some Λ0 ⊂ Λ finite. Also, pick some y ∈ (x0, x0 + �).

Then

[a, y] ⊂

(

⋃

�∈Λ0

U�

)

∪ U�′ ,

so that x0 < y ∈ A, contrary to the fact that x0 is an upper bound of A. ◽

Proposition 9.4. If (X,  ) is compact, then any A ∈  is compact. ♦

Proof. Let  be an open cover of A. Then since X ⧵ A ∈  ,  ∪ (X ⧵ A) is an open cover of X. By
compactness of X, there is some finite ′ that covers X. Then ′ ⧵ (X ⧵ A) is a finite cover of A. ◽

Proposition 9.5. If (X,  ) is Hausdorff, then any compact subspace of X is closed. ♦

Recall we have proved in the lecture that any compact subset of a metric space is closed and bounded.
Note how the proof here is similar to the proof for metric space.

Proof. Let A be compact; we prove X ⧵ A is open. Pick x0 ∈ X ⧵ A. Then for every y ∈ A, there
are Uy and Vy ∈  such that x0 ∈ Uy, y ∈ Vy, and Uy ∩ Vy = ∅. {Vy}y∈A is an open cover of A; by
compactness of A, A ⊂

⋃n
i=1 Vyi =∶ V for some finite number of points y1,… , yn in A. Then

U ∶=

( n
⋂

i=1
Uyi

)

∩ V = ∅.

This proves that for every x ∈ X ⧵ A, we can find a neighborhood U of x such that x ∈ U ⊂ X ⧵ A.
Thus X ⧵ A is open, so that A is closed. ◽
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Proposition 9.6. Let f ∶ (X, X) → (Y , Y ) be continuous. If A ⊂ X is compact, then f (A) is
compact in Y . ♦

Recall the first question in Problem Set 2.

Proof. Let
f (A) ⊂

⋃

�∈Λ
V�,

where {V�}�∈Λ ⊂ Y . Then

A ⊂ f−1(f (A)) ⊂ f−1
(

⋃

�∈Λ
V�

)

=
⋃

�∈Λ
f−1(V�).

A compact⇒ A ⊂
⋃

�∈Λ0
f−1(V�) ⊂

⋃

�∈Λ f
−1(V�) for some Λ0 ⊂ Λ finite. Then

f (A) ⊂ f

(

⋃

�∈Λ0

f−1(V�)

)

=
⋃

�∈Λ0

f
(

f−1(V�)
)

⊂
⋃

�∈Λ0

V�.
◽

Corollary 9.7. If X is compact, then any continuous function f ∶ X → ℝ is bounded. ♠

Proof. f (X) is compact in ℝ, hence bounded. ◽

Theorem 9.8 (Extreme Value Theorem). Let f ∶ X → ℝ be continuous. If X is compact, then
inf f (X) ∈ f (X) and sup f (X) ∈ f (X). ♢

Proof. f (X) is compact in ℝ, hence closed. ◽

We next prove the Uniform Continuity Theorem, which says that a continuous function on a com-
pact metric space is uniformly continuous. To prove the theorem, we will first need a lemma, the
Lebesgue Number Lemma. Recall that the diameter of a set E ⊂ X is defined to be

diam(E) = sup{d(x, y) | x, y ∈ E}.

Lemma 9.9 (Lebesgue Number Lemma). Let (X, d) be a compact metric space. Then given any
open cover  of X, there is some � > 0 such that

∀E ⊂ X, diam(E) < � ⇒ E ⊂ U for some U ∈ .

The number � is called the Lebesgue number for . ✽

Proof. For any x ∈ X, there is some U (x) in  such that x ∈ U (x). Then there is some open ball
B(x, �x) around x such that x ∈ B(x, �x) ⊂ U (x). The collection of open balls

{B(x, �x∕2)}x∈X
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is thus an open cover of X, so by compactness
X ⊂ B(x1, �x1∕2) ∪⋯ ∪ B(xn, �xn∕2)

for some finite set of points x1,… , xn inX. Let � = min{�x1∕2,… , �xn∕2}. We claim � is the desired
Lebesgue number. Let E ⊂ X such that diam(E) < �, and fix a point p ∈ E. Then p ∈ B(xi, �xi∕2)for some xi, so that d(xi, p) < �xi∕2. Let x ∈ E. Then

d(p, x) ≤ diam(E) < � ≤ �xi∕2,

so that
d(xi, x) ≤ d(xi, p) + d(p, x) < �xi∕2 + �xi∕2 = �xi .

This shows
E ⊂ B(xi, �xi∕2) ⊂ U (xi). ◽

Theorem 9.10 (Uniform Continuity Theorem). Let f ∶ (X, dX) → (Y , dY ) be continuous. If X is
compact, then f is uniformly continuous. ♢

Proof. Given � > 0, {B(y, �∕2)}y∈Y is an open cover of Y . Since f is continuous,
{f−1 (B(y, �∕2))}y∈Y

is an open cover of X, which admits a Lebesgue number � > 0 by Lemma 9.9. Then given any
x1, x2 ∈ X such that dX(x1, x2) < �, x1, x2 ∈ f−1 (B(y, �∕2)) for some y ∈ Y . Then f (x1), f (x2) ∈
B(y, �∕2), so that dY (f (x1), f (x2)) < �. ◽

Proposition 9.11. If X and Y is compact, then X × Y is compact. ♦

Proof. Let  = {U�×V�}�∈Λ be an open cover ofX ×Y by basis elements. For each (x, y) ∈ X ×Y ,
there is some U (x, y) × V (x, y) ∈  such that (x, y) ∈ U (x, y) × V (x, y). Since {x} × Y is compact,
we have

{x} × Y ⊂
n
⋃

i=1
U (x, yi) × V (x, yi)

for some y1,… , yn in Y . Put
Ux =

n
⋂

i=1
U (x, yi),

and note that Ux × Y ⊂
⋃n
i=1 U (x, yi) × V (x, yi). Now {Ux × Y }x∈X is an open cover of X × {y} for

any y ∈ Y , so by compactness
X × {y} ⊂

m
⋃

j=1
Uxj × Y

for some x1,… , xm in X. Then
X × Y ⊂

m
⋃

j=1
Uxj × Y .

Since each Uxj × Y can be covered by finitely many elements in , X × Y can be covered by finitely
many elements in . ◽
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Corollary 9.12. A finite product of compact spaces is compact. In particular, [a, b]n is compact in
ℝn. ♠

Proof. Proposition 9.11. ◽

Corollary 9.13. A ⊂ ℝn is compact if and only if it is closed and bounded. ♠

Proof. We have proved in class that a compact subset of a metric space is closed and bounded. Con-
versely, if A is closed and bounded, then it is contained in [−N,N]n for some N > 0, which is
compact by Corollary 9.12. Since a closed subset of a compact set is compact, A is compact. ◽

It turns out that an arbitrary product of compact spaces is also compact in the product topology.
This is the Tychonoff’s Theorem. It is equivalent to the axiom of choice. To prove the theorem, we
first need a lemma, the Alexander Subbasis Theorem.

Theorem 9.14 (Alexander Subbasis Theorem). Let (X,  ) be a topological space, where  = �()
is generated by a subbasis  . Then X is compact if and only if every open cover from  has a finite
subcover. ♢

Proof. Suppose every open cover from  has a finite subcover, yet X is not compact. By Observa-
tion 9.2, there is some open cover by the the basis elements in (), generated by  , that has no finite
subcover. Let  be the collection of all such covers, and note that set inclusion is a partial order on
 , where an upper bound for each chain is the union of all the covers in the chain. By Zorn’s lemma,
 has a maximal element  = {U�}�∈Λ.  has no finite subcover of X, but  ∪ {U ′} for any other
U ′ ∈ () would have a finite subcover.

Pick an arbitrary U� ∈ , so that U� = S1 ∩⋯∩Sn for some S1,… , Sn ∈  . Then Si ∈  for at
least one i ∈ {1,… , n}. For if not,  ∪ {S1},… , ∪ {Sn} would all have a finite subcover of X, so
that  has a finite subcover for X ⧵ Si for each i = 1.… , n. But then  would have a finite cover for

X ⧵ U� = X ⧵

( n
⋂

i=1
Si

)

=
n
⋃

i=1
(X ⧵ Si),

and thus for X = (X ⧵ U�) ∪ U�, a contradiction.
Thus, for any U� ∈ , there is U� ⊂ S� ∈  for some S� ∈  . Then

X ⊂
⋃

�∈Λ
U� ⊂

⋃

�∈Λ
S�.

By assumption, the cover {S�}�∈Λ has a finite subcover. But since {S�}�∈Λ ⊂ , this implies ∉  ,
a contradiction. ◽

Theorem 9.15 (Tychonoff’s Theorem). Let {(X�, �)}�∈Λ be a family of compact spaces. Then
∏

�∈ΛX�
is compact in the product topology. ♢

Proof. Let
 = {p−1�

(

U�
�
)

∶ � ∈ A(�), � ∈ Λ}
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be an arbitrary open cover of∏�∈ΛX� by subbasis elements. If for some � ∈ Λ,

{U�
� ∶ � ∈ A(�)}

covers X�, then by compactness of X�,

X� ⊂ U
�1
� ∪⋯ ∪ U�n

�

for some finite �1,… , �n ∈ A(�). In this case
∏

�∈Λ
X� ⊂ p

−1
�

(

U�1
�

)

∪⋯ ∪ p−1�
(

U�n
�

)

,

and we are done. If for all � ∈ Λ, none of {U�
� ∶ � ∈ A(�)} covers X�, then we can select

f (�) ∉
⋃

�∈A(�)
U�
�

for each � ∈ Λ, obtaining an f ∈
∏

�∈ΛX�. But then f ∉ , contrary to the assumption that 
covers∏�∈ΛX�. ◽

Our definition of compactness is in terms of open sets. An equivalent definition can be formulated
using closed sets.

Proposition 9.16. (X,  ) is compact if and only if for every {C�}�∈Λ ⊂ ,
⋂

�∈Λ0

C� ≠ ∅ for any finite Λ0 ⊂ Λ ⇐⇒
⋂

�∈Λ
C� ≠ ∅.

♦

Proof. X ⊂
⋃

�∈Λ U� ⇒ X ⊂
⋃

�∈Λ0
U� for some Λ0 ⊂ Λ finite if and only if

∅ = X ⧵X ⊃ X ⧵

(

⋃

�∈Λ
U�

)

=
⋂

�∈Λ

(

X ⧵ U�
)

⇓

∅ =
⋂

�∈Λ0

(

X ⧵ U�
) for some Λ0 ⊂ Λ finite.

Now take the contrapositive. ◽
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DEFINITION 9.17 Several other notions of compactness:
1. A space X is said to be �-compact if it is the union of countably many compact sets.
2. A space X is said to be Lindelöf if every open cover of X has a countable subcover.
3. A space X is said to be sequentially compact if every sequence in X has a convergent

subsequence.
4. A spaceX is said to be countably compact if every countable open cover ofX has a finite

subcover.
5. A space X is said to be limit point compact if every infinite subset of X has a limit point.
6. A space X is said to be pseudocompact if every continuous real-valued function onX is

bounded.

Observation 9.18. Compact⇒ �-compact⇒ Lindelöf; compact⇒ countably compact. ☉

Exercise 9.19. X is countably compact if and only if every nested sequence of closed nonempty sets
C1 ⊃ C2 ⊃⋯ has nonempty intersection. ◴

Proof. Proposition 9.16. ◽

Exercise 9.20. If X is sequentially compact, then it is countably compact. ◴

Proof (Proof 1). Let C1 ⊃ C2 ⊃ ⋯ be a nested closed nonempty sets in X, and select xn ∈ Cn for
each n. By assumption, (xn) has a subsequence (xnk) that converges to x ∈ X. Consider an Cn, which
contains {xi ∶ i ≥ n}. Then for each neighborhood U of x, U ∩Cn contains infinitely many points, so
that x ∈ C̄n = Cn. This is true for all n ∈ ℕ, so that x ∈ Cn for all n ∈ ℕ. We thus have x ∈ ⋂∞

n=1 Cn.◽

Proof (Proof 2). Let {Un}n∈ℕ be a countable open cover of X, and suppose it has no finite subcover.
Then we can select xn ∉ ⋃n

i=1 Un for each n ∈ ℕ, obtaining a sequence (xn) in X. Since X is
assumed to be sequentially compact, (xn) has a subsequence (xnk) that converges to some x ∈ X.
Since {Un}n∈ℕ covers X, we have x ∈ Um ⊂ ⋃m

i=1 Um for some m ∈ ℕ. But ⋃m
i=1 Um would contain

infinitely many items of (xn), contrary to our selection of the sequence (xn). ◽

Exercise 9.21. Every countably compact space X is limit point compact; the converse holds if X is
T1. ◴

Proof. Suppose first that X is countably compact. Let A ⊂ X be an infinite set. Suppose, to the
contrary, that A has no limit point. Then any subset of A has no limit point, so that any subset of A is
closed. Pick a sequence of distinct points (xn) in A. Then {On}n∈ℕ, whereOn = X ⧵{xn, xn+1,…}, is
a countable open cover ofX. But this open cover can not have a finite subcover, for ifX ⊂

⋃N
n=1On =

ON , then we would have X ⊂ X ⧵ {xN , xN+1,…}, which is absurd.
Suppose now X is limit point compact and T1. If there is some countable open cover {Un}n∈ℕ

38



of X that does not have a finite subcover, we can pick xn ∈ X ⧵ (U1 ∪ ⋯ ∪ Un) for each n ∈ ℕ.
Then the infinite set A = {xn ∶ n ∈ ℕ} would not have any limit point: any x ∈ X lies in some
UN , so in particular intersects A at only finitely many points, so that it can’t be a limit point of A by
Exercise 6.17. ◽

Exercise 9.22. Every countably compact space X is pseudocompact. ◴

Proof. Let X be countably compact, and let f ∶ X → ℝ be a continuous real-valued function. Then
X ⊂

⋃∞
n=1On, where On = {x ∈ X ∶ |f (x)| < n}. A finite subcover would mean X ⊂

⋃N
n=1On =

ON , so that |f (x)| < N for all x ∈ X. ◽

Theorem 9.23. For a metric space (X, d), 3, 4, 5, 6 in Definition 9.17 are all equivalent to compact-
ness. ♢

Proof. By Exercise 9.20, Exercise 9.21, and Exercise 9.22, to prove the theorem, it remains to prove
1. limit point compact implies sequentially compact for (X, d);
2. pseudocompact implies sequentially compact for (X, d), and
3. sequentially compact implies compact for (X, d).

Proof (Limit point compact⇒ sequentially compact). Suppose (X, d) is limit point compact, and let
(xn) be a sequence of distinct points in X. The infinite set A = {xn ∶ n ∈ ℕ} will then have a limit
point x ∈ X. Since (X, d) is Hausdorff and hence T1, B(x, �) ∩ A contains infinitely many points of
A for any � > 0. Then we can pick xnk ∈ B(x, 1

k
) for k = 1, 2,…, thus obtain a subsequence (xnk)that converges to x. ◽

Proof (Pseudocompact⇒ sequentially compact). Suppose (X, d) is pseudosompact, and let (xn) be
a sequence in X that does not have a convergent subsequence. Then A = {xn ∶ n ∈ ℕ} is discrete, so
for every xn there exists �n such that B̄(xn, �n) ∩ B̄(xm, �m) = ∅ for all n ≠ m. Define f ∶ X → ℝ by

f (x) =

{

n
(

1 − d(x,xn)
�n

)

x ∈ B(xn, �n);

0 otherwise.
It is easy to see that f is continuous but not bounded. ◽

Proof (Sequentially compact⇒ compact). Suppose (X, d) is sequentially compact. Then
(a) (X, d) satisfies the Lebesgue number lemma.

Suppose not; then for some open cover  of X, and for every n ∈ ℕ, there is En ⊂ X with
diam(En) <

1
n
such that En ⊈ U for any U ∈ . Pick xn ∈ En for each n ∈ ℕ. By assumption,

the sequence (xn) has a subsequence (xnk) such that xnk → x0 for some x0 ∈ X. x0 ∈ U for
some U ∈ , so there is some � > 0 such that x0 ∈ B(x0, �) ⊂ U . Since diam(En) → 0, there
is N1 ∈ ℕ such that diam(Enk) < �

2 for nk ≥ N1; and since xnk → x0, there is N2 ∈ ℕ such
that d(xnk , x0) < �

2
for nk ≥ N2. LetN = max{N1, N2}, nk ≥ N , and let x ∈ Enk . Then
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ℝ

S1

N

p1

p2

Figure 2: Stereographic projection of S1 ⧵ {N} to the real line.

d(x, x0) ≤ d(x, xnk) + d(xnk , x0) <
�
2
+ �
2
= �,

so that Enk ⊂ B(x, �) ⊂ U , a contradiction.
(b) (X, d) is totally bounded.

Suppose not; then there exits � > 0 such that X cannot be covered by finitely many elements
in {B(x, �)}x∈X . Let x1 be an arbitrary point in X; we can pick x2 ∈ X ⧵ B(x1, �). Similarly,
we can pick x3 ∈ X ⧵ (B(x1, �) ∪ B(x2, �))......Continuing this way, we obtain a sequence (xn)
where xn ∈ X ⧵ (B(x1, �) ∪ B(x2, �) ∪⋯ ∪ B(xn−1, �)). Then (xn) cannnot have a convergent
subsequence, since d(xn, xi) ≥ � for i = 1,… , n − 1.

Let  be an open cover of X, and let � > 0 be a Lebesgue number for . Since X is totally
bounded, X ⊂

⋃n
i=1 B(xi, �∕3) for some x1,… , xn ∈ X. Since each B(xi, �∕3) has diameter less

than �, B(xi, �∕3) ⊂ Ui ∈ , i = 1,… , n for some U1,… , Un ∈ . Then

X ⊂
n
⋃

i=1
B(xi, �∕3) ⊂

n
⋃

i=1
Ui,

◽

and we are done. ◽

9.1 One-point Compactification

Fig. 2 is the stereographic projection of S1 ⧵ {N} to the real line. ℝ is homeomorphic to S1 ⧵ {N}.
They are both not compact. However, if we add the "missing point" N , then the resulting space S1
would be compact. Similarly, we can add a point to ℝ to make it compact. One can think of this
process as wrapping up the real line around the unit circle, and then joint the two ends of the line to
form a "coherent" (compact) space.

Similarly, we can add a point N to the plane ℝ2, to obtain a compact space ℝ2 ∪ {N}. We can
think of this as wrapping up the plane around the punctured sphere S2 ⧵ {N}, and then add the final
pointN to glue the space together (Fig. 3).
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p

N

ℝ2

(x, y)

Figure 3: Stereographic projection of S2 ⧵ {N} to the real plane.

Generally, suppose we have a non-compact space X at hand, and we would like to add a point to
X to make a compact space Y = X ∪ {N}. How should we define the topology on Y ? Return to the
above example of S1, we see that for any neighborhood U ofN , S1 ⧵U is homeomorphic to a closed
interval, hence compact. This suggests that for our new space Y = X ∪ {N}, any neighborhood ofN
should already cover "most portion of the space", namely only a compact subspace ofX is left outside
U . In this way, Y would easily be made compact.

DEFINITION 9.24 Let (X, X) be a non-compact topological space. A compactification of X is
a compact space Y such that X ⊂ Y and X̄ = Y . If Y ⧵X has only one point, then it is called a
one-point compactification of X.

Construction 9.25. Let (X, X) be a non-compact space. Let N be a point not in X, and define the
topology Y on Y = X ∪ {N} as

Y = X ∪ N = {Y ⧵ C ∶ C ⊂ X compact } .

Lemma 9.26. Y is indeed a topology on Y . ✽

Proof. We verify that Y satisfies Definition 4.1.
1. ∅, Y ∈ Y .

2.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U1, U2 ∈ X ⇒ U1 ∩ U2 ∈ X ;

Y ⧵ C1, Y ⧵ C2 ∈ N ⇒ (Y ⧵ C1) ∩ (Y ⧵ C2) = Y ⧵ (C1 ∪ C2) ∈ N ;

U ∈ X , Y ⧵ C ∈ N ⇒ U ∩ (Y ⧵ C) = U ⧵ C ∈ X .
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3.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{U�} ⊂ X ⇒
⋃

U� ∈ X ;

{Y ⧵ C�} ⊂ N ⇒
⋃

(Y ⧵ C�) = Y ⧵ (
⋂

C�) ∈ N ;

U ∈ X , Y ⧵ C ∈ N ⇒ U ∪ (Y ⧵ C) = (Y ∩ U ) ∪ (Y ⧵ C) = Y ⧵ (C ⧵ U ) ∈ N by Lemma 2.1.

Proposition 9.27. (Y , Y ) is compact. ♦

Proof. Any open cover  of Y = X ∪ {N} must contain Y ⧵ C ∈ N for some compact subset C in
X, in order to cover N , since N ∉ U for any U ∈ X . Then since we are only left with a compact
subset C , we can cover it by finitely many subcover. ◽

Observation 9.28. Note that, IfX is already compact, then the construction above amounts to attach
an isolated point {N} toX. Indeed, sinceX is compact, {N} = Y ⧵X ∈ N is an open set containing
N . X is also closed in Y in this case, namely X̄ = X, and we do not call such a compactification. If
X is not compact, thenX is open in Y = X ∪{N}, andN is a limit point ofX, namely (Y ⧵C)∩X =
X ⧵ C ≠ ∅ for any C ⊂ X compact, so that X̄ = X ∪ {N} = Y . ☉

Often, our space (X, X) will be Hausdorff, and we would like our one-point compactification
(Y , Y ) of X to be Hausdorff as well. Suppose X is Hausdorff and let x, y ∈ Y = X ∪ {N} be
two distinct points. If x, y ∈ X, then we can find U, V ∈ X ⊂ Y such that x ∈ U, y ∈ V , and
U ∩ V = ∅, because X is Hausdorff. If x ∈ X, while y ∈ Y ⧵X = {N}, then finding x ∈ U ∈ X ,
N ∈ Y ⧵ C ∈ N such that

U ∩ (Y ⧵ C) = ∅

is equivalent to finding a neighborhood U of x and a compact subset C such that
x ∈ U ⊂ C.

Motivated by this, we have the following notion:
DEFINITION 9.29 X is said to be locally compact at x ∈ X if there is some C ⊂ X compact
such that x ∈ U ⊂ C for some neighborhood U of x. It is called locally compact if it is locally
compact at every of its points.

Corollary 9.30. If (X,  ) is locally compact and Hausdorff, then its one-point compactification Y =
X ∪ {N} is Hausdorff as well. ♠

We next do some exercises about the properties of locally compact spaces.

Exercise 9.31. Let (X, X) be Hausdorff. Then X is locally compact if and only if given x ∈ X, for
any x ∈ U ∈ X , there is x ∈ V ∈ X such that x ∈ V ⊂ V̄ ⊂ U and V̄ is compact. ◴

Proof. "⇐": This is trivial. Just take C = V̄ and U = V in Definition 9.29.
"⇒": Let x ∈ U ∈ X . Take one-point compactification Y = X ∪ {N} of X. Since C = Y ⧵ U

is closed in Y , it is compact by Proposition 9.4. Thus as in the proof of Proposition 9.5, we can find
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x ∈ V ∈ X , C ⊂ W ∈ Y such that V ∩ W = ∅. Then V ⊂ Y ⧵ W , which is closed, so that
V̄ ⊂ Y ⧵W . Since C = Y ⧵ U ⊂ W , we have U = Y ⧵ (Y ⧵ U ) ⊃ Y ⧵W ⊃ V̄ ⊃ V . What’s more,
V̄ is compact, by Proposition 9.4 again. ◽

10 Countability Axioms

DEFINITION 10.1 Let X be a topological space and let x be the set of all neighborhoods of
x. X is said to have a countable basis at x if there is a countable 0 ⊂ x and a function
f ∶x → 0 such that

f (N) ⊂ N

for allN ∈x. We say X is first countable if it has a countable basis at every x ∈ X.

• A metric space is first countable: {B(x, 1∕n)}n∈ℕ is a countable basis at x.
• ℝl is first countable: {[x, x + 1∕n)}n∈ℕ is a countable basis at x.
The significance of a first countable space lies in the fact that sequences are enough to characterize

limit points and continuous functions.

Proposition 10.2. Let X be a topological space.

(a) Let A ⊂ X. If there is a sequence (xn) in A such that xn → x ∈ X, then x ∈ Ā. The converse
holds if X is first countable.

(b) Let f ∶ X → Y . If f is continuous, then xn → x ⇒ f (xn) → f (x). The converse holds if X is
first countable. ♦

Proof. Suppose X is first countable.
(a) Let x ∈ Ā, and let0 = {N1, N2,…}. Pick

xn ∈

( n
⋂

i=1
Ni

)

∩ A

for each n ∈ ℕ. Then it is easy to see that xn → x: for everyN ∈x,
f (N) = Nk ⊂ N

for some k ∈ ℕ. Then
xn ∈

n
⋂

i=1
Ni ⊂ N

for all n ≥ k.
(b) We prove f (Ā) ⊂ f (A). Let x ∈ Ā. Then by (a), there is a sequence (xn) inA such that xn → x.

By assumption, f (xn)→ f (x), so that f (x) ∈ f (A). ◽
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DEFINITION 10.3 If a space X has a countable basis, then we say X is second countable.

• ℝ is second countable: {(a, b)}a,b∈ℚ is a countable basis for ℝ. Similarly, ℝn is second count-
able.

• If X is an uncountable set, the discrete topology on X does not have a countable basis. The
discrete topology can be generated by the discrete metric, so this shows that not every metric
space is second countable.

• ℝl is not second countable. The lower limit topology is too fine onℝ such that it is not possible
for a countable basis to generate this topology. To see this, let  be a basis for ℝl. Then for
every x ∈ ℝ, there is Bx ∈  such that x ∈ Bx ⊂ [x, x + 1). Further, Bx ≠ By for x ≠ y. This
shows that the function x → Bx is injective, so that  has cardinality at least as large as ℝ, so
that  can not be countable.

DEFINITION 10.4 A ⊂ X is said to be dense in X if Ā = X. If X has a countable dense subset,
then X is said to be separable.

Proposition 10.5. Let X be a topological space.

(a) If X is second countable, then it is Lindelöf.

(b) If X is second countable, then it is separable. ♦

Proof. Suppose X is second countable, and let  = {Bn} be a countable basis.
(a) Let be an open cover ofX. For eachBn, chooseAn ∈  such thatBn ⊂ An, if this is possible.

Then ′ = {An} is countable. We claim that it covers X. For each x ∈ X, we have x ∈ A for
some A ∈ . Since A is open, we have x ∈ Bn ⊂ A for some Bn ∈ . Then x ∈ Bn ⊂ An.
This proves that′ = {An} indeed covers X.

(b) Choose xn ∈ Bn for each Bn ∈ . Then {xn} is dense in X. ◽

Exercise 10.6. A subspace of a first (second) countable space is first (second) countable, and a count-
able product of first (second) countable spaces is second-countable. ◴

Proof. Immediate. ◽

Exercise 10.7. Let A be an uncountable subset of a second countable space (X, �()). Show that
uncountably many points of A are limit points of A. ◴

Proof. LetA0 be the subset ofA that are limit points ofA, and suppose it is countable. ThenA⧵A0 is
uncountable. For every x ∈ A⧵A0, there is a basis element Bx such that Bx∩A = {x}. Furthermore,
for x ≠ y ∈ A ⧵A0 we have Bx ≠ By since Bx ∩A ≠ By ∩A. The map x → Bx is thus injective from
A ⧵ A0 to , so that  cannot be countable. ◽
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Exercise 10.8. Show that every compact metrizable space is second countable. ◴

Proof. Let (X, d) be a compact metric space. For each n ∈ ℕ, letn be the collection of those finitely
many elements in {B(x, 1∕n)}x∈X that cover X. Then

 =
⋃

n∈ℕ
n

is a countable basis of X. ◽

Exercise 10.9. Show that ℝl is Lindelöf. ◴

Proof. Let  = {[a, b)} be an open cover of ℝ by basis elements. For any x ∈ ℝ, define
Cx = {y ≥ x | [x, y] can be countably covered}.

Then it must be the case that supCx = ∞. For suppose supCx = z < ∞. Then there is [a, b) ∈ 
such that z ∈ [a, b). Pick y ∈ Cx ∩ [a, b), so that [x, y] is countably covered, and pick z′ ∈ (z, b).
Then [x, z′] = [x, y] ∪ [y, z′] can be countably covered, since [y, z′] ⊂ [a, b). This shows z′ ∈ Cx,
contradicting to the fact that z = supCx. Thus any closed interval in ℝ can be countably covered, and
so is ℝ =

⋃

n∈ℕ[−n, n]. ◽

FromProposition 10.5, we see that Lindelöf and separability is weaker than the second countability
axiom. ℝl is such an example that is both Lindelöf and separable (rational numbers are dense in ℝl)
but not second countable. However, for metric spaces these three are equivalent.

Exercise 10.10. Let (X, d) be a metric space.
(a) If X is Lindelöf, then it is second countable.
(b) If X is separable, then it is second countable. ◴

Proof. (a) For each n ∈ ℕ, letn be the collection of those countablymany elements in {B(x, 1∕n)}x∈X
that cover X. Then

 =
⋃

n∈ℕ
n

is a countable basis of X.
(b) Let {xn}n∈ℕ be a countable dense subset in X. Then

{

B(xn, 1∕m)
}

n,m∈ℕ

is a countable basis of X. ◽

Corollary 10.11. ℝl is not metrizable. ♠

Exercise 10.12. Show that ℝ2l is not Lindelöf. ◴
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Proof. Let
L = {(x,−x) | x ∈ ℝ}.

Then L is closed in ℝ2l. Indeed, for any (x, y) ∈ ℝ2 ⧵L, we have (x, y) ∈ [x, a) × [y, b) ⊂ ℝ2 ⧵L for
some a, b ∈ ℝ, so that ℝ2 ⧵ L is open. Now consider the open cover of ℝ2 by

 =
{

ℝ2 ⧵ L
}

∪ {[x, x + a) × [−x,−x + a) | x ∈ ℝ}

for some a > 0. Since [x, x + a) × [−x,−x + a) ∩ L = {(x,−x)} for each x ∈ ℝ, remove any
[x, x + a) × [−x,−x + a) would result in {(x,−x)} ∈ ℝ2 not being covered. ◽

11 Separation Axioms

DEFINITION 11.1 Let (X,  ) be a topological space. Given two sets A and B in X, we say A
and B can be separated in the topology if there exist U, V ∈  such that A ⊂ U , B ⊂ V , and
U ∩ V = ∅.

1. Suppose one point sets are closed in (X,  ). ThenX is said to be regular if for any closed
set C in X, any x ∉ C can be separated in the topology from C .

2. Suppose one point sets are closed in (X,  ). Then X is said to be normal if every pair of
disjoint closed sets can be separated in the topology.

Proposition 11.2. Let (X,  ) be a topological space where one-point sets are closed.

1. X is regular if and only if given x ∈ X and a neighborhood U of x, there is an open set V such
that x ∈ V and V̄ ⊂ U .

2. X is normal if and only if given a closed set A and an open set U such that A ⊂ U , there is an
open set V such that A ⊂ V and V̄ ⊂ U . ♦

Proof. 1. Suppose first that X is regular, and let x ∈ U . Then x ∉ X ⧵ U , so that there is
V ,W ∈  such that x ∈ V , X ⧵ U ⊂ W , and V ∩W = ∅. We then have V ⊂ X ⧵W ⊂ U ,
and since X ⧵W is closed, we have V̄ ⊂ X ⧵W ⊂ U , as desired.
To prove the converse, let C be closed in X. Then for every x ∈ X ⧵ C , there is open set V
such that x ∈ V ⊂ V̄ ⊂ X ⧵ C . Observe that X ⧵ V̄ ⊃ C , and V ∩ (X ⧵ V̄ ) = ∅. x and C are
thus separated by V and X ⧵ V̄ .

2. Suppose first thatX is normal, and letA ⊂ U . ThenA∩(X⧵U ) = ∅, so that there is V ,W ∈ 
such that A ⊂ V , X ⧵ U ⊂ W , and V ∩W = ∅. We then have V ⊂ X ⧵W ⊂ U , and since
X ⧵W is closed, we have V̄ ⊂ X ⧵W ⊂ U , as desired.
To prove the converse, let A,B be closed sets in X such that A ∩ B = ∅. Then A ⊂ X ⧵ B,
which is open, so that by assumption there is V open such that A ⊂ V ⊂ V̄ ⊂ X ⧵ B. Observe
that X ⧵ V̄ ⊃ B, and V ∩ (X ⧵ V̄ ) = ∅. A and B are thus separated by V and X ⧵ V̄ . ◽
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Example 11.3. We define a topology on ℝ to make it fail to be regular, but still Hausdorff. To do
this, observe that 0 and K = {1∕n ∶ n ∈ ℕ} are very "close": 0 is a limit point of K in the usual
topology. If we can make K closed in our new topology, then the point 0, which is not in K , would
be very very close to the closed set K , and they may not be separated provided our new topology is
not too fine. Now, how to make K closed? Easy, just declare (a, b) ⧵ K to be open! Formally, we let
K be the basis on ℝ consisting of all open intervals (a, b) and all sets of the form (a, b) ⧵ K . The
topology generated by the basis K is denoted by K , and we write ℝK = (ℝ, K ). K is closed in
ℝK , and ℝK is easily seen to be Hausdorff. Suppose now we want to separate 0 and K . Then for
neighborhood of 0, we must choose sets of the form (a, b) ⧵K . Without loss of generality we assume
it is (−�, �) ⧵ K , where 0 < � < 1. For an open set that contains K we must choose sets of the form
(a, b), and without loss of generality we assume it is (0, r) for some r > 1. Now 0 ∈ (−�, �) ⧵ K ,
K ⊂ (0, r), but obviously the two open sets cannot be disjoint. Indeed, by Lemma 2.2 we have
(

(−�, �) ⧵K
)

∩ (0, r) =
[

(−�, �) ∩ (0, r)
]

⧵K = (0, �) ⧵K , and the last set is obviously not empty. ◃

Example 11.4. Every metric space is normal. To see this, let (X, d) be a metric space, and A and
B be two disjoint closed sets in X. Since X ⧵ B is open, for every x ∈ A there is an open ball
B(x, �x) such that x ∈ B(x, �x) ⊂ X ⧵ B, and similarly for every y ∈ B there is B(y, �y) such that
y ∈ B(y, �y) ⊂ X ⧵ A. Then

U =
⋃

x∈A
B(x, �x∕2) and V =

⋃

y∈B
B(y, �y∕2)

are open sets containing A and B respectively. To see U ∩ V = ∅, let z ∈ U ∩ V . Then z ∈
B(x, �x∕2) ∩ B(y, �y∕2) for some x ∈ A and y ∈ B. Then

d(x, y) ≤ d(x, z) + d(z, y) < �x∕2 + �y∕2 ≤ max{�x, �y},

a contradiction to our selection of open balls. ◃

Exercise 11.5. Let f, g ∶ X → Y be continuous, where Y is Hausdorff. Show that A = {x ∈
X|f (x) = g(x)} is closed in X. ◴

Proof. We prove X ⧵ A = {x ∈ X|f (x) ≠ g(x)} is open in X. Let x ∈ X ⧵ A, so that f (x) ≠ g(x).
Then since Y is Hausdorff, there are open sets U, V in Y such that f (x) ∈ U , g(x) ∈ V , and U ∩V =
∅. We then have x ∈ f−1(U ) as well as x ∈ g−1(V ), so that x ∈ f−1(U ) ∩ g−1(V ). Given any
y ∈ f−1(U ) ∩ g−1(V ), we have f (y) ∈ U and g(y) ∈ V , and since U ∩ V = ∅, we have f (y) ≠ g(y),
so that y ∈ X ⧵ A. This proves x ∈ (

f−1(U ) ∩ g−1(V )
)

⊂ X ⧵ A, so X ⧵ A is open. ◽

Exercise 11.6. Let p ∶ X → Y be a closed continuous surjective map. Show that ifX is normal, then
so is Y . ◴

Proof. Let A,B be closed sets in Y such that A ∩ B = ∅. Then p−1(A) and p−1(B) are closed in X,
and p−1(A) ∩ p−1(B) = ∅. By normality of X, there exist U, V open in X such that p−1(A) ⊂ U ,
p−1(B) ⊂ V , andU∩V = ∅. Now to find disjoint open subsets in Y that containA andB respectively,
we first take the complementsX ⧵U andX ⧵V , which are closed, and send them to Y via p, obtaining
two closed sets p(X ⧵ U ) and p(X ⧵ V ) in Y , then finally take the complements Y ⧵ p(X ⧵ U ) and
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Y ⧵ p(X ⧵ V ). These two open sets in Y are disjoint due to the surjectivity of p. Indeed, we have
(

Y ⧵ p(X ⧵ U )
)

∩
(

Y ⧵ p(X ⧵ V )
)

= Y ⧵
[

p(X ⧵ U ) ∪ p(X ⧵ V )
]

= Y ⧵ p
[

(X ⧵ U ) ∪ (X ⧵ V )
]

= Y ⧵ p
(

X ⧵ (U ∩ V )
)

= Y ⧵ p(X)
= Y ⧵ Y = ∅.

Now we claim A ⊂ Y ⧵p(X ⧵U ). From p−1(A) ⊂ U , we haveX ⧵U ⊂ X ⧵p−1(A) = p−1(Y ⧵A).
Then

p(X ⧵ U ) ⊂ p
(

p−1
(

Y ⧵ A)
)

⊂ Y ⧵ A,

so that Y ⧵ p(X ⧵ U ) ⊃ A. The proof for Y ⧵ p(X ⧵ V ) ⊃ B is similar. This completes the proof that
Y is normal. ◽

Exercise 11.7. Let f ∶ X → Y be a closed continuous surjective map such that f−1({y}) is compact
for each y ∈ Y . ◴

(a) Show that if X is Hausdorff, then so is Y .
Recall howwe proved that every compact set in a Hausdorff space is closed in Proposition 9.5. Its
proof can be used to show that Hausdorff space is "regular" and "normal" with respect to compact
sets.

Lemma 11.8. In a Hausdorff space X, any compact set A can be separated from points not in
A. ✽

Proof. Fix x0 ∈ X ⧵ A. Then for every y ∈ A, there are open sets Uy and Vy such that x0 ∈ Uy,
y ∈ Vy, andUy∩Vy = ∅. {Vy}y∈A is an open cover ofA; by compactness ofA, A ⊂

⋃n
i=1 Vyi =∶

V for some finite number of points y1,… , yn in A. Denote U ∶=
(

⋂n
i=1 Uyi

)

. Then x ∈ U ,
A ⊂ V , and U ∩ V = ∅, which is desired. ◽

Lemma 11.9. In a Hausdorff space X, every pair of disjoint compact sets A and B can be sep-
arated. ✽

Proof. By Lemma 11.8, for every x ∈ A, there is open sets Ux and Vx such that x ∈ Ux, B ⊂ Vx,
and Ux ∩ Vx = ∅. By compactness of A, the open cover {Ux}x∈A of A has a finite subcover so
that A ⊂ Ux1 ∪⋯ ∪Uxn for some finite set of points x1,… , xn in A. Then U ∶= Ux1 ∪⋯ ∪Uxnand V ∶= Vx1 ∩⋯ ∩ Vxn are disjoint open sets that contain A and B respectively. ◽

Proof (Proof of (a)). Let y1 ≠ y2 ∈ Y . Then p−1({y1}) and p−1({y2}) are closed disjoint sets in
X. We would not have proceeded as in Exercise 11.6 to find open sets U and V in X such that
p−1({y1}) ⊂ U , p−1({y2}) ⊂ V , and U ∩ V = ∅, since we do not assume X to be normal, but
merely Hausdorff. Now our extra condition that "f−1({y}) is compact for each y ∈ Y " comes to
rescue, in light of Lemma 11.9. ◽

48



(b) Show that if X is regular, then so is Y .

Proof. Given closed set C in Y and y ∉ C , we would like to find open sets U and V in X such
that p−1({y}) ⊂ U , p−1(C) ⊂ V , and U ∩ V = ∅, so that we can proceed as in the proof of
Exercise 11.6. The proof is in the same spirit as in Lemma 11.9. For every x ∈ p−1({y}), by
regularity of X we can find open sets Ux and Vx in X such that x ∈ Ux, p−1(C) ⊂ Vx, and
Ux ∩ Vx = ∅. {Ux}x∈p−1({y}) is an open cover of p−1({y}); by compactness of p−1({y}) there are
x1,… , xn in p−1({y}) such that p−1({y}) ⊂ Ux1 ∪⋯ ∪ Uxn . Then U ∶= Ux1 ∪⋯ ∪ Uxn and
V ∶= Vx1 ∩⋯ ∩ Vxn are the desired open sets we want to find. ◽

(c) Show that if X is locally compact, then so is Y .

Proof. Let y ∈ Y be arbitrary. Consider p−1({y}). Since X is locally compact, for every x ∈
p−1({y}) there are some open set Ux and compact set Cx such that x ∈ Ux ⊂ Cx. {Ux}x∈p−1({y})
is an open cover of p−1({y}); by compactness of p−1({y}) there are x1,… , xn in p−1({y}) such
that p−1({y}) ⊂ Ux1 ∪⋯ ∪ Uxn . Let U ∶= Ux1 ∪⋯ ∪ Uxn and C ∶= Cx1 ∪⋯ ∪ Cxn . Then
p−1({y}) ⊂ U ⊂ C , where U is open and C is compact. From this we have

X ⧵ U ⊃ X ⧵ C

⇓

p(X ⧵ U ) ⊃ p(X ⧵ C)

⇓

Y ⧵ p(X ⧵ U ) ⊂ Y ⧵ p(X ⧵ C) = Y ⧵ (Y ⧵ p(C)) = p(C).

We have y ∈ Y ⧵ p(X ⧵ U ) ⊂ p(C), where Y ⧵ p(X ⧵ U ) is open and p(C) is compact. This
completes the proof that Y is locally compact. ◽

From Lemma 11.9, if a Hausdorff space is compact, then it is automatically normal, since every
closed set in a compact space is compact.

Proposition 11.10. Every compact Hausdorff space is normal. ♦

We can use the similar idea in the proof of Lemma 11.9 to obtain the following result.

Proposition 11.11. Every Lindelöf regular space is normal. ♦

Proof. Suppose X is regular and Lindelöf, and let A and B be two disjoint closed sets in X. By
regularity ofX, for each x ∈ Awe can choose a neighborhoodUx of x such that x ∈ Ux ⊂ Ūx ⊂ X⧵B.
Similarly, for each y ∈ B there is Vy such that y ∈ Vy ⊂ V̄y ⊂ X ⧵A. {Ux}x∈A and {Vy}y∈B are covers
of A and B respectively; since A and B are themselves Lindelöf (because they are closed in X), we
have A ⊂

⋃∞
n=1 Un and B ⊂

⋃∞
n=1 Vn for some countable subcovers.

Now define U ′
n = Un ⧵

⋃n
i=1 V̄n and V ′

n = Vn ⧵
⋃n
i=1 Ūn. Then for U =

⋃∞
n=1 U

′
n and V =

⋃∞
n=1 V

′
nwe have A ⊂ U , B ⊂ V , and U ∩ V = ∅, as desired. ◽
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12 Urysohn Lemma and Its Applications

Theorem 12.1 (Urysohn Lemma). LetX be a normal space, and let A and B be two disjoint closed
sets inX. Then there exists a continuous function f ∶ X → [0, 1] such that f (A) = 1 and f (B) = 0.♢

Proof. We shall find a family of open sets around A and index them by dyadic rationals in [0, 1], and
define our continuous function using the index.

Let U0 = X ⧵ B. Since A ⊂ X ⧵ B, we have by normality an open set U1∕2 such that
A ⊂ U1∕2 ⊂ Ū1∕2 ⊂ U0.

Applying the above process again to the closed sets A and Ū1∕2, we can find U3∕4 and U1∕4 such that
A ⊂ U3∕4 ⊂ Ū3∕4 ⊂ U1∕2 ⊂ Ū1∕2 ⊂ U1∕4 ⊂ Ū1∕4 ⊂ U0.

We index the open sets closer to A using dyadic rationals that are closer to 1, because we want f (A)
to be equal to 1, and points closer to A to have higher values, while for points that are further and
further away from A we want to assign them smaller and smaller values so that eventually f (x) = 0
for all x ∈ B. Continuing our construction, we obtain a family of open sets {Up} indexed by dyadic
rationals k∕2n in [0, 1] such that Ūp ⊂ Uq for all p > q.

Now define f ∶ X → [0, 1] by f (x) = sup{p | x ∈ Up} for x ∈ X ⧵ B, and f (x) = 0 for x ∈ B.
To prove f is continuous, by Exercise 7.9 we only need to verify that {f (x) > a} and {f (x) < a} are
open inX. To make matters more clear, let us denote the set {p | x ∈ Up} by Ax, so that p ∈ Ax if and
only if x ∈ Up. We want to show f (x) = supAx is continuous. Let a ∈ (0, 1) be given, and let p > a.
For any x ∈ Up, we have p ∈ Ax, so that a < p ≤ supAx = f (x). This proves Up ⊂ {f (x) > a} for
any p > a, so we have ⋃p>a Up ⊂ {f (x) > a}. Conversely, if a < supAx = f (x), then there is some
p ∈ Ax such that a < p ≤ supAx, so that x ∈ Up. This proves {f (x) > a} ⊂ ⋃

p>a Up. Thus we have
{f (x) > a} =

⋃

p>a Up.
Next, let p < a. If x ∉ Ūp, then x ∉ Up′ for all p′ > p, so that p′ ∉ Ax for all p′ > p. We can

then derive that f (x) = supAx ≤ p < a. This shows X ⧵ Ūp ⊂ {f (x) < a} for all p < a, so that
⋃

p<aX ⧵ Ūp ⊂ {f (x) < a}. Conversely, if x ∈ X is such that f (x) < a, then we can find two dyadic
numbers p and p′ such that f (x) < p′ < p < a. We have x ∉ Up, since otherwise p ∈ Ax and thus
p ≤ supAx = f (x), a contradiction. By our construction we have Ūp′ ⊂ Up, so x ∉ Ūp′ as well. This
proves {f (x) < a} ⊂ ⋃

p<aX ⧵ Ūp. We thus have {f (x) < a} = ⋃

p<aX ⧵ Ūp. We have proved that
both {f (x) < a} and {f (x) > a} can be written as unions of open sets in X, so they are open. This
completes the proof that our f is indeed continuous. ◽

There is no speciality of the interval [0, 1] in the statement of the theorem, and we can replace it
by an arbitrary closed interval [a, b].

Theorem 12.2 (Tietze Extension Theorem). LetX be a normal space and letA be a closed subset of
X. Any continuous function f ∶ A→ [a, b] can be extended to a continuous function g ∶ X → [a, b].♢

Proof. Given a continuous function f from A to [−r, r], we can use Urysohn lemma to construct a
continuous function g on X such that
(1) |g| ≤ r

3
for all x ∈ X;
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(2) |f − g| ≤ 2r
3

for all a ∈ A.
To do this, consider I1 = [−r,−r∕3], I2 = [−r∕3, r∕3], I3 = [r∕3, r], and let B = f−1(I1) and
C = f−1(I3). B and C are closed and disjoint in X, so by Urysohn Lemma there exists continuous
function g ∶ X → [−r∕3, r∕3] such that g(B) = −r∕3 and g(C) = r∕3. It is easy to see that g satisfies
(1) and (2).

Now we prove the theorem. Without loss of generality, let f ∶ A → [−1, 1] be a continuous
function on A that takes values in [−1, 1]. Apply the above procedure to f , we obtain a continuous
function g1 on X such that
(1) |g1| ≤

1
3
for all x ∈ X;

(2) |f − g1| ≤
2
3
for all a ∈ A.

Apply the same construction to the function f − g1 ∶ A → [−2∕3, 2∕3], we obtain a continuous
function g2 on X such that
(1) |g2| ≤

1
3

(2
3

)

for all x ∈ X;

(2) |f − g1 − g2| ≤
2
3

(2
3

)

for all a ∈ A.
By induction, we get a sequence of continuous functions {gn}n∈ℕ on X such that for each n ∈ ℕ

(1) |gn| ≤
1
3

(2
3

)n−1
for all x ∈ X;

(2) |f −
n
∑

i=1
gi| ≤

(2
3

)n
for all a ∈ A.

Let g =
∑∞
n=1 gn. We show g is the desired extension of f . First, by comparison test g indeed

converges on X: we have
|g| =

|

|

|

|

|

∞
∑

n=1
gn
|

|

|

|

|

≤
∞
∑

n=1

1
3

(2
3

)n−1
= 1.

From (2) we have
lim
n→∞

|f −
n
∑

i=1
gi| = |f − g| = 0

on A, so that f (a) = g(a) for all a ∈ A. It is also clear that∑n
i=1 gi converges uniformly to g:

|g − gn| =
|

|

|

|

|

∞
∑

i=n+1
gi(x)

|

|

|

|

|

≤ 1
3

∞
∑

i=n+1

(2
3

)i−1
=
(2
3

)n
.

Continuity of g follows. This completes the proof that g ∶ X → [−1, 1] is the desired extension of
f ∶ A→ [−1, 1]. ◽

Corollary 12.3. LetX be a normal space and let A be a closed subset ofX. Any continuous function
f ∶ A→ ℝ can be extended to a continuous function g ∶ X → ℝ. ♠
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Proof. Without loss of generality, let f ∶ A → (−1, 1) be a continuous function on A that takes
values in (−1, 1) ⊂ [−1, 1]. By the Tietze Extension Theorem, we can extend f to a continuous
function g ∶ X → [−1, 1]. What if there is some x ∈ X such that g(x) = 1 or g(x) = −1? Kill
them! Note that A ⊂ g−1(−1, 1) and E = g−1{−1, 1} are disjoint in X, so by Urysohn Lemma there
is continuous function � ∶ X → [−1, 1] such that

�(A) = 1 and �(E) = 0.

We use � to "kill" the set of points in X on which g has values in {−1, 1}. So let g′ be defined by
g′(x) = �(x)g(x)

for all x ∈ X. It is easy to see that g(a) = �(a)g(a) = 1 ⋅ g(a) = g(a) = f (a) for a ∈ A. Also, when
x ∈ E, we have g′(x) = �(x)g(x) = 0 ⋅g(x) = 0 and for x ∉ E we have g′(x) = �(x)g(x) ≤ 1 ⋅g(x) <
1. Thus g′ ∶ X → (−1, 1) is our desired extension of f ∶ A→ (−1, 1). ◽

Exercise 12.4. The Tietze Extension Theorem implies the Urysohn Lemma. ◴

Proof. LetA andB be two closed and disjoint subsets in a normal spaceX. Define f ∶ A∪B → [0, 1]
by

f (x) =

{

1 if x ∈ A;
0 if x ∈ B.

SinceA∩B = ∅, f is continuous. Apply the Tietze Extension Theorem, we get a continuous extension
g ∶ X → [0, 1] of f such that g(x) = f (x) for x ∈ A ∪ B. Thus g(x) = 1 for x ∈ A and g(x) = 0 for
x ∈ B, as desired. ◽

Our next application of the Urysohn Lemma is the embedding of compact manifolds in Euclidean
space ℝN .

DEFINITION 12.5 f ∶ X → Y is an embedding of X into Y if f ∶ X → f (X) is a homeomor-
phism. Namely, f is injective and continuous, and f−1 ∶ f (X)→ X is also continuous.

DEFINITION 12.6 Anm-manifoldM is a second countable Hausdorff space that is locally home-
omorphic to ℝm.

By "locally homeomorphic toℝm"wemean each point ofM has a neighborhood that is homeomorphic
to an open subset of ℝm. The most familiar example of a manifold is probably the place you are
standing on: the surface of our earth (here we approximate the surface of earth by the unit ball S2 =
{x ∈ ℝ3 ∶ ‖x‖2 = 1}) This is the manifold that we can directly feel in reality: the surface of earth
lies in a three dimensional space, but looking around, we feel like we are living on a giant plane, and
the surface of earth can thus be seen as a 2-manifold.

The requirement that a manifold be second countable and Hausdorff is equally important with the
local homeomorphism assumption. They together ensure that a manifold can indeed be embedded in
Euclidean space. In other word, the local homeomorphism assumption alone does not guarantee that
a space can have all the crucial topological properties of the Euclidean space.

The support of a real valued function � onX is {x ∈ X ∶ �(x) ≠ 0}. We denote the support of a
function � by supp�.
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DEFINITION 12.7 Let {U1,… , Un} be a finite open cover ofX. An indexed family of continuous
functions �i ∶ X → [0, 1], i = 1,… , n is said to be a partition of unity subordinated to {Ui} if
(1) supp�i ⊂ Ui for each i;
(2) ∑n

i=1 �i =∶ Φ ≡ 1 on X.

Lemma 12.8. Let {U1,… , Un} be a finite open cover of of X. If X is normal, then there exists a
partition of unity subordinated to {Ui}. ✽

Proof. First, we prove that there is an open cover {V1,… , Vn} ofX such that V̄i ⊂ Ui for each i. Since
X = U1 ∪ U2 ∪⋯ ∪ Un, we have A1 = X ⧵ (U2 ∪⋯ ∪ Un) ⊂ U1. By normality, there is open set V1
such that A1 ⊂ V1 and V̄1 ⊂ U1. Then {V1, U2,… , Un} coversX. Similarly, A2 = X ⧵ (V1∪⋯∪U3∪
⋯ ∪Un) ⊂ U2, so that there is open set V2 such that A2 ⊂ V2 and V̄2 ⊂ U2. Then {V1, V2, U3,… , Un}
covers X. In general, after we find V1,… , Vk−1 such that {V1,… , Vk−1, Uk,… , Un} covers X, we
have Ak = X ⧵ (V1 ∪⋯∪Vk−1 ∪Uk+1 ∪⋯∪Un) ⊂ Uk, so that there is open set Vk such that Ak ⊂ Vk
and V̄k ⊂ Uk, and {V1,… , Vk, Uk+1,… , Un} coversX. At k = nwe obtain an open cover {V1,… , Vn}
of X such that V̄i ⊂ Ui for each i, as desired.

We can similarly find open cover {W1,… ,Wn} such that W̄i ⊂ Vi for each i. We can now apply
Urysohn Lemma to obtain a continuous function  i ∶ X → [0, 1] for each i such that  i(W̄i) = 1 and
 i(X ⧵ Vi) = 0. Then since {x ∈ X ∶  i(x) ≠ 0} ⊂ Vi, we have

supp i = {x ∈ X ∶  i(x) ≠ 0} ⊂ V̄i ⊂ Ui.

Given x ∈ X, we have x ∈ Wi for some i, so that Ψ(x) = ∑n
i=1  i(x) > 1. The functions

�i(x) =
 i(x)
Ψ(x)

for i = 1,… , n constitute the desired partition of unity. ◽

Lemma 12.9. Let f ∶ X → Y be a bijective continuous function. IfX is compact and Y is Hausdorff,
then f is a homeomorphism. ✽

Proof. A closed in X ⇐⇒ A compact in X ⇐⇒ f (A) compact in Y ⇐⇒ f (A) closed in Y . This proved
that f−1 ∶ Y → X is continuous. ◽

Theorem 12.10 (Embedding of Manifolds). IfM is a compactm-manifold, then it can be embedded
in ℝN for someN ∈ ℕ. ♢

Proof. For every x ∈ M we can find a neighborhood Ux of x such that Ux is homeomorphic to an
open set in ℝm. The collection {Ux}x∈M coversM , so by compactness there is a subset {U1,… , Un}
of {Ux}x∈M that also coversM . We thus have n continuous functions fi ∶ Ui → ℝm at our disposal,
where each fi is an embedding of Ui into ℝm. BecauseM is compact and Hausdorff,M is normal,
so that we have partition of unity �1,… , �n subordinated to {Ui}. Define f ′i ∶ M → ℝm for each
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i = 1,… , n by
f ′i (x) =

{

�i(x) ⋅ fi(x) x ∈ Ui;
0 x ∈M ⧵ supp�i.

For x ∈ Ui ∩ (M ⧵ supp�i) we have �i(x) ⋅ fi(x) = 0 ⋅ fi(x) = 0, so that f ′i is well defined. Nowdefine
F ∶M → ℝ ×⋯ ×ℝ ×ℝm ×⋯ ×ℝm

by
F (x) =

(

�1(x),… , �n(x), f ′1(x),… , f ′n(x)
)

.

F is continuous, so by Lemma 12.9 we only need to verify that F is injective. Suppose F (x) = F (y).
Then �i(x) = �i(y) and f ′i (x) = f ′i (y) for all i = 1,… , n. Since ∑n

i=1 �i(x) = 1, we have �i(x) =
�i(y) > 0 for some i, so that x, y ∈ Ui. Then from f ′i (x) = f ′i (y), we have fi(x) = fi(y). But
fi ∶ Ui → ℝm is injective, so that x = y. ◽
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